
LZ78 Substring Compression in
CDAWG-compressed space

Hiroki Shibata1, Dominik Köppl2

1. Kyushu University

2. University of Yamanashi

WAAC2024

2

LZ78 Factorization [Ziv & Lempel, '78]

The LZ78 factorization of a string 𝑇 is a factorization

 𝑇 = 𝐹0𝐹1 … 𝐹𝑓

where 𝐹𝑖 𝑖 ≥ 1 is the longest prefix of 𝑇′ = 𝐹𝑖 … 𝐹𝑓 that can

be represented by 𝐹𝑖 = 𝐹𝑗𝑐 𝑗 < 𝑖, 𝑐 ∈ Σ .

𝑇 = abaabaac = 𝐹0𝐹1 … 𝐹𝑓

𝐹 = ε, a, b, aa, ba, ac
𝐹′ = (0, a , 0, b , 1, a , 2, a , (1, c)))

(𝐹0 = 𝜀 is the empty string)

𝐹′ is a compressed representation of 𝑇.

𝑇′ is the unfactorized part of 𝑇.

3

Substring Compression Problem

◼ The text 𝑇 of length 𝑛 is given in advance.

⚫ We can construct an index of 𝑇 before the queries.

◼ Queries:

⚫ Input: two integers 𝑙, 𝑟 (1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛)

⚫ Output: The compressed representation of 𝑇 𝑙. . 𝑟 .

𝑇 = abaabaac, 𝑙, 𝑟 = 2, 7

→ The LZ78 factorization of 𝑇[𝑙. . 𝑟] is (b, a, ab, aa).

We only consider the case 𝑙, 𝑟 = 1, 𝑛 in this presentation,
but the algorithms can be extended for arbitrary 𝑙, 𝑟 .

4

Previous Work

(𝑧𝑙,𝑟 is the number of LZ78 factors of 𝑇 𝑙. . 𝑟 .)

Space for
Index

Working
Space

Preprocessing
Time

Query Time

[Köppl, '21] 𝑂 𝑛 𝑂 𝑧𝑙,𝑟 𝑂 𝑛 𝑂 𝑧𝑙,𝑟

Time/Space Complexity

We focus on LZ78 substring compression problem.

Recently, [Köppl, '21] proposed a method for LZ78 substring

compression.

◼ This method is time optimal but consumes 𝑂 𝑛 words of space.

5

Our Work

Our method is the space-efficient variant of [Köppl, '21],

which will be recalled in the next slides.

(𝑧𝑙,𝑟 is the number of LZ78 factors of 𝑇 𝑙. . 𝑟 .)

Space for
Index

Working
Space

Preprocessing
Time

Query Time

[Köppl, '21] 𝑂 𝑛 𝑂 𝑧𝑙,𝑟 𝑂 𝑛 𝑂 𝑧𝑙,𝑟

Ours 𝑂 𝑒 𝑂 𝑧𝑙,𝑟 𝑂 𝑛 𝑂 𝑧𝑙,𝑟 log 𝑛

Time/Space Complexity

We propose a method for LZ78 substring compression in

compressed space.

(𝑒 is the number of the edges of the CDAWG of 𝑇.)

6

Computing LZ78 by suffix trees

(previous method)

7

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of 𝑇.

𝑇 = abaabaac

a

a

c

b
aac

c

c

c

3

6

4

8

1

7

2

c

5b
aac

b
aac

b
aab

aac

8

LZ78 Tries

LZ78 Trie: The trie consisting of all LZ78 factors of 𝑇.

◼ The nodes have a one-to-one correspondence with each LZ78 factor.

𝑇 = abaabaac = 𝐹0𝐹1 … 𝐹𝑓

𝐹 = ε, a, b, aa, ba, ac

a
𝐹0

𝐹1 𝐹2

𝐹3 𝐹4

a

b

a

𝐹5

c

9

Superimposing LZ78 trie onto ST

◼ We can superimpose the LZ78 trie onto the ST.

⚫ The LZ trie is an induced subgraph over the ST consisting only

of the LZ78 factors.

LZ Trie

ST

10

Computing LZ78 by ST

◼ The new factor can be computed as follows:

1. Find the path representing the unfactorized part of 𝑇.

2. Find the lowest LZ78 node on the path.

3. Add an LZ78 node immediately below the lowest LZ78 node.

LZ Trie

ST

11

Computing LZ78 by ST

◼ The new factor can be computed as follows:

1. Find the path representing unfactorized suffix of 𝑇.

2. Find the lowest LZ78 node on the path.

3. Add an LZ78 node immediately below the lowest LZ78 node.

LZ Trie

ST

12

Computing LZ78 by ST

◼ The new factor can be computed as follows:

1. Find the path representing unfactorized suffix of 𝑇.

2. Find the lowest LZ78 node on the path.

3. Add an LZ78 node immediately below the lowest LZ78 node.

ST

LZ Trie

13

Implementation and Complexity

Required data structures:

⚫ Lowest Marked Ancestor (LMA) [Westbrook, 1992]

▲ amortized O(1) time / query

⚫ Weighted Level Ancestor [Gawrychowski et al., 2014]

▲ O(1) time / query

Time / Space complexity

⚫ Each data structure can be stored in 𝑂 𝑛 words.

⚫ We can find the lowest factor and add a factor in constant time per factor.

◼ Overall Complexity ⇒ 𝑂 𝑛 words ・ 𝑂 𝑧𝑙,𝑟 time / query

(𝑧𝑙,𝑟 is the number of LZ78 factors of 𝑇[𝑙. . 𝑟])

14

Computing LZ78 in compressed space

(proposed method)

15

CDAWG (Compact Directed Acyclic Word Graph)

CDAWG: The edge-labelled DAG which obtained by merging

isomorphic subtrees of the corresponding ST.

◼ Property: The number 𝑒 of edges of the CDAWG is small for some highly

repetitive strings.

→ CDAWG can be regarded as a compressed representation of STs.

𝑇 = abaabaaca

c c

a

c

a

b
aa

c

a

c

c

c
c

3

5

6

4

8

1
2

7

b
aac

b
aac

b
aac

b
aa

b
aac

b
aa

b
aa

16

Why CDAWG cannot simply replace ST?

Replacing ST with CDAWG is difficult because

1. several edges can end at the same node, and

2. a node of CDAWG can represent several strings.

So we use an additional data structure.

Fig: The CDAWG of 𝑇 = abaabaac.

• 𝑣 represents abaa, baa, and ba.

• The indegree of 𝑣 is 3.

a

c c

a

c

b
aac

b
aa

b
aa

𝑣

17

Suffix Arrays (SA)

The suffix array stores the lexicographic order of all suffixes.

⚫ Since the leaves have a one-to-one correspondence to all suffixes,

the SA represents the order of the leaves.

⚫ One leaf of the ST corresponds to one position on the SA.

ST

LZ Trie

SA

Note: We can guarantee that each
suffix corresponds to a leaf node by
adding a unique character at the
end of 𝑇.

18

Converting LZ78 Nodes to Intervals

Each LZ78 node corresponds to an interval on SA.

→ The set of all LZ78 nodes can be represented by the set of intervals.

LZ Trie

ST

SA

LZ78 intervals

19

Stabbing-Max Problem

Finding lowest LZ78 node can be reduced to the following queries and operations:

1. Find the interval 𝑎, 𝑏 ∈ 𝑆 containing 𝑘 whose weight is maximum.

⚫ Corresponding to find the lowest LZ node.

2. Add an interval 𝑎, 𝑏 with weight 𝑤 to a set 𝑆.

⚫ Corresponding to add an LZ node.

1 8

𝑤 = 1

𝑤 = 2

6

𝑤 = 1

𝑤 = 0

20

Stabbing-Max Problem

Finding lowest LZ78 node can be reduced to the following queries and

operations:

1. Find the interval 𝑎, 𝑏 ∈ 𝑆 containing 𝑘 whose weight is maximum.

2. Add an interval 𝑎, 𝑏 with weight 𝑤 to a set 𝑆.

This problem is known as the stabbing-max problem, and there is a data

structure that performs any query with the following complexity [Tarjan,

1979]:

◼ Add/Find an interval: 𝑂(log 𝑚) time / query

◼ Space complexity: 𝑂(𝑚) words
(𝑚 is the number of intervals)

21

Bottoleneck of Space Complexity

Now, our data structure uses Θ(𝑛) space because of the ST and the SA.

To reduce the space, we need to compute LZ78 factors without them.

LZ Trie: Θ(𝑧𝑙,𝑟)

ST: Θ(𝑛)

SA: Θ(𝑛)

stabbing-max: Θ(𝑧𝑙,𝑟)
Note: 𝑧𝑙,𝑟 ∈ 𝑂(𝑛)

22

Replacing ST/SA with CDAWG

Since CDAWG is a compacted variant of ST, some CDAWG-based index

efficiently performs ST/SA operation.

There is a CDAWG-based index that performs ST/SA operation in

𝑂(log 𝑛) time and is stored in 𝑂 𝑒 space. [Bealazzougui and Cunial, CPM 2017]

LZ Trie

ST

SA

stabbing-max

CDAWG

23

Overall Structure

stabbing-max: Θ(𝑧𝑙,𝑟)

CDAWG: Θ(𝑒)

SA (implicit)

Our method only uses the CDAWG and the stabbing-max structure.

◼ Space for index: Θ(𝑒) words

◼ Working space for queries: Θ(𝑧𝑙,𝑟) words

◼ Query time: 𝑂(𝑧𝑙,𝑟 log 𝑛)

24

Conclusion

◼ We proposed a method for LZ78 substring compression in

compressed space.

◼ Some applications:

⚫ We can replace the CDAWG by some other compressed index.

⚫ Applying this method for other LZ78-like compressions. (LZD, LZMW)

Space for
Index

Working
Space

Preprocessing
Time

Query Time

[Köppl, '21] 𝑂 𝑛 𝑂 𝑧𝑙,𝑟 𝑂 𝑛 𝑂 𝑧𝑙,𝑟

Ours 𝑂 𝑒 𝑂 𝑧𝑙,𝑟 𝑂 𝑛 𝑂 𝑧𝑙,𝑟 log 𝑛

Time/Space Complexity

25

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of 𝑇.

𝑇 = abaabaac

c

a

c

b
aac

b
aa

c

b
aaa

b
aac c

b
aac c

3 6 4 85271

33

LZ78 Factorization [Ziv & Lempel, '78]

◼ One of a text compression method.

◼ Factorize a string 𝑇 to 𝑇 = 𝐹0𝐹1 … 𝐹𝑓 by a specific

algorithm.

𝑇 = abbabaaab = 𝐹0𝐹1 … 𝐹𝑓

𝐹 = ε, a, b, ba, baa, ab

(𝐹0 = 𝜀 is the empty string)

34

LZ78 Factorization [Ziv & Lempel, '78]

◼ 𝐹𝑖 (𝑖 ≥ 1) is computed as follows:

1. Compute the longest prefix of 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ +

𝐹𝑖−1 . . 𝑛] that appears in 𝐹.

2. Set 𝐹𝑖 = 𝐹𝑗𝑇′ ℓ + 1 , where 𝐹𝑗 is the longest factor that

precedes 𝑇′.

𝑇 = abbabaaab = 𝐹0𝐹1 … 𝐹𝑓 𝐹0 = 𝜀

𝑇′ = abbabaaab
𝐹 = (ε)

35

LZ78 Factorization [Ziv & Lempel, '78]

◼ 𝐹𝑖 (𝑖 ≥ 1) is computed as follows:

1. Compute the longest prefix of 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ +

𝐹𝑖−1 . . 𝑛] that appears in 𝐹.

2. Set 𝐹𝑖 = 𝐹𝑗𝑇′ ℓ + 1 , where 𝐹𝑗 is the longest factor that

precedes 𝑇′.

𝑇′ = abbabaaab
𝐹 = (ε, a)

36

LZ78 Factorization [Ziv & Lempel, '78]

◼ 𝐹𝑖 (𝑖 ≥ 1) is computed as follows:

1. Compute the longest prefix of 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ +

𝐹𝑖−1 . . 𝑛] that appears in 𝐹.

2. Set 𝐹𝑖 = 𝐹𝑗𝑇′ ℓ + 1 , where 𝐹𝑗 is the longest factor that

precedes 𝑇′.

𝑇′ = abbabaaab
𝐹 = (ε, a, b)

37

LZ78 Factorization [Ziv & Lempel, '78]

◼ 𝐹𝑖 (𝑖 ≥ 1) is computed as follows:

1. Compute the longest prefix of 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ +

𝐹𝑖−1 . . 𝑛] that appears in 𝐹.

2. Set 𝐹𝑖 = 𝐹𝑗𝑇′ ℓ + 1 , where 𝐹𝑗 is the longest factor that

precedes 𝑇′.

𝑇′ = abbabaaab
𝐹 = (ε, a, b, ba)

38

LZ78 Factorization [Ziv & Lempel, '78]

◼ 𝐹𝑖 (𝑖 ≥ 1) is computed as follows:

1. Compute the longest prefix of 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ +

𝐹𝑖−1 . . 𝑛] that appears in 𝐹.

2. Set 𝐹𝑖 = 𝐹𝑗𝑇′ ℓ + 1 , where 𝐹𝑗 is the longest factor that

precedes 𝑇′.

𝑇′ = abbabaaab
𝐹 = (ε, a, b, ba, baa)

39

LZ78 Factorization [Ziv & Lempel, '78]

◼ 𝐹𝑖 (𝑖 ≥ 1) is computed as follows:

1. Compute the longest prefix of 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ +

𝐹𝑖−1 . . 𝑛] that appears in 𝐹.

2. Set 𝐹𝑖 = 𝐹𝑗𝑇′ ℓ + 1 , where 𝐹𝑗 is the longest factor that

precedes 𝑇′.

𝑇′ = abbabaaab
𝐹 = (ε, a, b, ba, baa, ab)

43

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of 𝑇.

𝑇 = abbabaaab
a b

babaaab

a

babaaab

baaab

a b

aaab

b ab

4

6
7

8

9

2

3

a

ab
5

1

44

LZ78 Tries

LZ78 Trie: The trie consisting of all LZ78 factors of 𝑇.

◼ The nodes have a one-to-one correspondence with each LZ78 factor.

𝑇 = abbabaaab = 𝐹0𝐹1 … 𝐹𝑓

𝐹 = ε, a, b, ba, baa, ab

a
𝐹0

𝐹1 𝐹2

𝐹5 𝐹3

𝐹4

b

b

a

a

45

Computing LZ78 by ST

◼ 𝐹𝑖 (𝑖 ≥ 1) can be computed as follows:

1. Find the path on the ST representing 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ , 𝐹𝑖−1 . . 𝑛].

2. Find the lowest mark 𝑀𝑗 on the path.

3. Set 𝐹𝑖 = 𝐹𝑗𝑇′ 𝐹𝑗 + 1 and add a mark 𝑀𝑖 to the position on the ST corresponding to 𝐹𝑖 .

𝑇′ = abbabaaab
𝐹 = (ε)

a b

babaaab

a

babaaab

aab

baaab

a b

aaab

b ab

1

2

3

4

5

6
7

8

9

𝑀0

46

Computing LZ78 by ST

◼ 𝐹𝑖 (𝑖 ≥ 1) can be computed as follows:

1. Find the path on the ST representing 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ , 𝐹𝑖−1 . . 𝑛].

2. Find the lowest mark 𝑀𝑗 on the path.

3. Set 𝐹𝑖 = 𝐹𝑗𝑇′ 𝐹𝑗 + 1 and add a mark 𝑀𝑖 to the position on the ST corresponding to 𝐹𝑖 .

𝑇′ = abbabaaab
𝐹 = (ε, a)

a b

babaaab

a

babaaab

aab

baaab

a b

aaab

b ab

2

3

4

5

6
7

8

9𝑀1

1

𝑀0

47

Computing LZ78 by ST

◼ 𝐹𝑖 (𝑖 ≥ 1) can be computed as follows:

1. Find the path on the ST representing 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ , 𝐹𝑖−1 . . 𝑛].

2. Find the lowest mark 𝑀𝑗 on the path.

3. Set 𝐹𝑖 = 𝐹𝑗𝑇′ 𝐹𝑗 + 1 and add a mark 𝑀𝑖 to the position on the ST corresponding to 𝐹𝑖 .

𝑇′ = abbabaaab
𝐹 = (ε, a, b, ba)

a b

babaaab

a

babaaab

aab

baaab

a b

aaab

b ab

4

5

6
7

8

9𝑀1

1

𝑀2

2

3

𝑀3

𝑀0

48

Computing LZ78 by ST

◼ 𝐹𝑖 (𝑖 ≥ 1) can be computed as follows:

1. Find the path on the ST representing 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ , 𝐹𝑖−1 . . 𝑛].

2. Find the lowest mark 𝑀𝑗 on the path.

3. Set 𝐹𝑖 = 𝐹𝑗𝑇′ 𝐹𝑗 + 1 and add a mark 𝑀𝑖 to the position on the ST corresponding to 𝐹𝑖 .

𝑇′ = abbabaaab
𝐹 = (ε, a, b, ba, baa)

a b

babaaab

a

babaaab

ab
baaab

a b

aaab

b ab

4

6
7

8

9𝑀1

1

𝑀2

2

𝑀3

𝑀4

𝑀0

3

5

a

49

Computing LZ78 by ST

◼ 𝐹𝑖 (𝑖 ≥ 1) can be computed as follows:

1. Find the path on the ST representing 𝑇′ = 𝑇[1 + 𝐹0 + 𝐹1 + ⋯ , 𝐹𝑖−1 . . 𝑛].

2. Find the lowest mark 𝑀𝑗 on the path.

3. Set 𝐹𝑖 = 𝐹𝑗𝑇′ 𝐹𝑗 + 1 and add a mark 𝑀𝑖 to the position on the ST corresponding to 𝐹𝑖 .

𝑇′ = abbabaaab
𝐹 = (ε, a, b, ba, baa, ab)

a b

babaaab

a

babaaab

baaab

a b

aaab

b ab

4

6
7

8

9𝑀1 𝑀2

2

𝑀3

𝑀4

𝑀0

3

a

ab
5

𝑀5

1

50

Superimposing LZ78 trie and the ST

◼ We superimpose the LZ78 trie on the ST.

𝑇 = abaabaac
𝐹 = ε, a, b, aa, ba, ac

a

a

c

b
aac

c

c

c

3

6

4

8

1

7

2

c

5b
aac

b
aac

b
aac

𝐹0

𝐹1

𝐹3 𝐹5 𝐹4

b

a

c

𝐹2

	スライド 1: LZ78 Substring Compression in CDAWG-compressed space
	スライド 2: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 3: Substring Compression Problem
	スライド 4: Previous Work
	スライド 5: Our Work
	スライド 6: Computing LZ78 by suffix trees (previous method)
	スライド 7: Suffix Trees (ST)
	スライド 8: LZ78 Tries
	スライド 9: Superimposing LZ78 trie onto ST
	スライド 10: Computing LZ78 by ST
	スライド 11: Computing LZ78 by ST
	スライド 12: Computing LZ78 by ST
	スライド 13: Implementation and Complexity
	スライド 14: Computing LZ78 in compressed space (proposed method)
	スライド 15: CDAWG (Compact Directed Acyclic Word Graph)
	スライド 16: Why CDAWG cannot simply replace ST?
	スライド 17: Suffix Arrays (SA)
	スライド 18: Converting LZ78 Nodes to Intervals
	スライド 19: Stabbing-Max Problem
	スライド 20: Stabbing-Max Problem
	スライド 21: Bottoleneck of Space Complexity
	スライド 22: Replacing ST/SA with CDAWG
	スライド 23: Overall Structure
	スライド 24: Conclusion
	スライド 25: Suffix Trees (ST)
	スライド 33: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 34: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 35: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 36: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 37: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 38: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 39: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 43: Suffix Trees (ST)
	スライド 44: LZ78 Tries
	スライド 45: Computing LZ78 by ST
	スライド 46: Computing LZ78 by ST
	スライド 47: Computing LZ78 by ST
	スライド 48: Computing LZ78 by ST
	スライド 49: Computing LZ78 by ST
	スライド 50: Superimposing LZ78 trie and the ST

