WAAC2024

LZ78 Substring Compression in
CDAWG-compressed space

Hiroki Shibatal, Dominik Koppl?2
1. Kyushu University

2. University of Yamanashi

LZ78 Factorization [Ziv & Lempel, '78]

The LZ78 factorization of a string T is a factorization

T — FOF1 Ff

T’ is the unfactorized part of T.
where F; (i = 1) is the longest prefix of T’ = F; ... Fr that can
be represented by F; = Fic (j <i,c €X).

T =ab = FoF; ... F

F'i d tation of T
F (8 a b , ,) IS a compressed representation o

= ((0,a), (0, b), : :)

(Fy = ¢ is the empty string)

Substring Compression Problem

B The text T of length n is given in advance.

® We can construct an index of T before the queries.
B Queries:

® Input:twointegers,r (1 <I1<r <n)

® Output: The compressed representation of T[L..7].

/- We only consider the case (I,r) = (1,n) in this presentation,
7 but the algorithms can be extended for arbitrary (I,).

C The LZ78 factorization of T[L..7] is (b, a,ab, an

Previous Work

We focus on LZ78 substring compression problem.

Recently, [Koppl, '21] proposed a method for LZ78 substring
compression.

B This method is time optimal but consumes 0(n) words of space.

Time/Space Complexity

Space for Working Preprocessing | Query Time
Index Space Time
[Koppl, '21] 0(n) O(er 0(n) O(er

(2, is the number of LZ78 factors of T'[l..7].)

Our Work

We propose a method for LZ78 substring compression in

compressed space.

Time/Space Complexity

Space for Working Preprocessing | Query Time
Index Space Time

[Koppl, '21] 0(n) 0(z,) 0(n) 0(z,)
Ours 0(e) 0(z,) 0(n) 0(z,,logn)

Our method is the space-efficient variant of [Koppl, '21],

which will be recalled in the next slides.

(2, is the number of LZ78 factors of T'[l..7].)
(e is the number of the edges of the CDAWG of T.)

Computing LZ78 by suffix trees

(previous method)

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of T.

T = abaabaac

LZ78 Tries

LZ78 Trie: The trie consisting of all LZ78 factors of T.

B The nodes have a one-to-one correspondence with each LZ78 factor.

T — ab — FOF1 Ff
F = (81 d, b)) ’) F3 Fs || Fy

Superimposing LZ78 trie onto ST

B We can superimpose the LZ78 trie onto the ST.

® ThelLZtrieis aninduced subgraph over the ST consisting only
of the LZ78 factors.

p— —

™ LZ Trie

ST — —

10

Computing LZ78 by ST

B The new factor can be computed as follows:

1. Find the path representing the unfactorized part of T.
2. Find the lowest LZ78 node on the path.
3. Add an LZ78 node immediately below the lowest LZ78 node.

— —

™ LZ Trie

ST — —

Computing LZ78 by ST

B The new factor can be computed as follows:

1. Find the path representing unfactorized suffix of T.
2. Find the lowest LZ78 node on the path.
3. Add an LZ78 node immediately below the lowest LZ78 node.

— —

™ LZ Trie

ST — —

12

Computing LZ78 by ST

B The new factor can be computed as follows:

1. Find the path representing unfactorized suffix of T.
2. Find the lowest LZ78 node on the path.
3. Add an LZ78 node immediately below the lowest LZ78 node.

— —

™ LZ Trie

ST — —

13

Implementation and Complexity

Required data structures:
® Lowest Marked Ancestor (LMA) [Westbrook, 1992]
A amortized O(1) time / query
® Weighted Level Ancestor [Gawrychowski et al., 2014]

A O(1) time/ query

Time / Space complexity
® Each data structure can be stored in 0(n) words.

® We can find the lowest factor and add a factor in constant time per factor.

m Overall Complexity = 0(n) words * 0(z,,) time [query
(z;, is the number of LZ78 factors of T[l..r])

Computing LZ78 in compressed space

(proposed method)

14

CDAWG (Compact Directed Acyclic Word Graph)

CDAWG: The edge-labelled DAG which obtained by merging
isomorphic subtrees of the corresponding ST.

m Property: The number ¢ of edges of the CDAWG is small for some highly
repetitive strings.

— CDAWG can be regarded as a compressed representation of STs.

Why CDAWG cannot simply replace ST?

Replacing ST with CDAWG is difficult because
1. several edges can end at the same node, and
2. anode of CDAWG can represent several strings.

So we use an additional data structure.

Fig: The CDAWG of T = abaabaac.
v represents abaa, baa, and ba.

The indegree of v is 3.

Suffix Arrays (SA)

The suffix array stores the lexicographic order of all suffixes.

® Since the leaves have a one-to-one correspondence to all suffixes,
the SA represents the order of the leaves.

® One leaf of the ST corresponds to one position on the SA.

— —

= LZ Trie

ST — -

Note: We can guarantee that each
suffix corresponds to a leaf node by
adding a unique character at the
SA end of T.

Converting LZ78 Nodes to Intervals

Each LZ78 node corresponds to an interval on SA.

— The set of all LZ78 nodes can be represented by the set of intervals.

— —

™ LZ Trie

—

SA
LZ78 intervals Y |

19

Stabbing-Max Problem

Finding lowest LZ78 node can be reduced to the following queries and operations:

1. Findtheintervall[a, b] € S containing k whose weight is maximum.

® Corresponding to find the lowest LZ node.

2. Add aninterval[a, b] with weight w to a set S.

® Corresponding to add an LZ node.

20

Stabbing-Max Problem

Finding lowest LZ78 node can be reduced to the following queries and
operations:

1. Find theinterval [a, b] € S containing k whose weight is maximum.

2. Add aninterval [a, b] with weight w to a set S.

This problem is known as the stabbing-max problem, and there is a data
structure that performs any query with the following complexity [Tarjan,
1979]:

B Add/Find aninterval: 0(log m) time [query

B Space complexity: 0(m) words
(m is the number of intervals)

21

Bottoleneck of Space Complexity

Now, our data structure uses O(n) space because of the ST and the SA.

To reduce the space, we need to compute LZ78 factors without them.

— —

= LZ Trie: 0(z;,)

ST: G)(n) — —

SA: O(n)

stabbing-max: 0(z;,) . J
| Note: z;,. € O(n)

Replacing ST/SA with CDAWG

Since CDAWG is a compacted variant of ST, some CDAWG-based index
efficiently performs ST/SA operation.

There is a CDAWG-based index that performs ST/SA operation in
O(logn) time and is stored in 0(e) space. [Bealazzougui and Cunial, CPM 2017]

pm— —

~— LZ Trie

ST = - CDAWG

—

SA
stabbing-max ! :

Overall Structure

Our method only uses the CDAWG and the stabbing-max structure.

B Space forindex: O(e) words

m Working space for queries: 0(z;,.) words

@ CDAWG: 0(e)
I \ I

B Querytime: 0(z;, logn)

SA (implicit)
stabbing-max: 0(z;,)

24

Conclusion

m We proposed a method for LZ78 substring compression in

compressed space.

B Some applications:
® We canreplace the CDAWG by some other compressed index.

® Applying this method for other LZ78-like compressions. (LZD, LZMW)

Time/Space Complexity

Space for Working Preprocessing | Query Time
Index Space Time

[Koppl, '21] 0(n) 0(z,) 0(n) 0(z,)
Ours 0(e) 0(z.,) 0(n) 0(z,,logn)

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of T.

T = abaabaac

eq
eeq

d Y

y A C \ 4 C

1979949

Jee(q

oeE(q
oeeq

4

LZ78 Factorization [ZiIv & Lempel, '78]

B One of a text compression method.

B Factorizeastring T to T = FyF; ... Fr by a specific

algorithm.
T — ab — F()Fl Ff
F = (g a,b,ba,baa,ab)

(F, = ¢ is the empty string)

LZ78 Factorization [Ziv & Lempel, '78]

B 5 (i >1)iscomputed as follows:

1. Compute the longest prefix of T’ = T[1 + |Fy| + |Fy| + - +
|F;_4|..n] that appearsin F.

2. SetF; = FT'[¢+1],whereF; is the longest factor that

precedes T'.

T = abbabaaab = FyF; ... Ff (Fy = ¢)

T' = abbabaaab
F = (¢

LZ78 Factorization [Ziv & Lempel, '78]

B 5 (i >1)iscomputed as follows:

1. Compute the longest prefix of T’ = T[1 + |Fy| + |Fy| + - +
|F;_4|..n] that appearsin F.

2. SetF; = FT'[¢+1],whereF; is the longest factor that

precedes T'.

T' = abbabaaab
F =(ga)

LZ78 Factorization [Ziv & Lempel, '78]

B 5 (i >1)iscomputed as follows:

1. Compute the longest prefix of T’ = T[1 + |Fy| + |Fy| + - +
|F;_4|..n] that appearsin F.

2. SetF; = FT'[¢+1],whereF; is the longest factor that

precedes T'.

T' = 2bbabaaab
F =(ga,b)

LZ78 Factorization [Ziv & Lempel, '78]

B 5 (i >1)iscomputed as follows:

1. Compute the longest prefix of T’ = T[1 + |Fy| + |Fy| + - +
|F;_4|..n] that appearsin F.

2. SetF; = FT'[¢+1],whereF; is the longest factor that

precedes T'.

T' = 21 babaaab
F = (ga,b,ba)

LZ78 Factorization [Ziv & Lempel, '78]

B 5 (i >1)iscomputed as follows:

1. Compute the longest prefix of T’ = T[1 + |Fy| + |Fy| + - +
|F;_4|..n] that appearsin F.

2. SetF; = FT'[¢+1],whereF; is the longest factor that

precedes T'.

T' = baaab
F = (g4a,b,ba,baa)

LZ78 Factorization [Ziv & Lempel, '78]

B 5 (i >1)iscomputed as follows:

1. Compute the longest prefix of T’ = T[1 + |Fy| + |Fy| + - +
|F;_4|..n] that appearsin F.

2. SetF; = FT'[¢+1],whereF; is the longest factor that

precedes T'.

T = ab
F = (g, 4a,b,ba, baa, ab)

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of T.

T = abbabaaab

babaaab

LZ78 Tries

LZ78 Trie: The trie consisting of all LZ78 factors of T.

B The nodes have a one-to-one correspondence with each LZ78 factor.

~3
1

ab — FOF1 Ff f1 2
F — (81 a) b)))) a/

Computing LZ78 by ST

B F; (i >1)canbe computed as follows:

1. Find the path on the ST representing T’ = T[1 + |F,| + |F1| + -+, |F;_1]..n].

Find the lowest mark M; on the path.

2.
Set F; = F;T'[|F;| + 1] and add a mark M; to the position on the ST corresponding to F;.

3.

— abbabaaab
= (&)

Computing LZ78 by ST

B F; (i >1)canbe computed as follows:
1. Find the path on the ST representing T’ = T[1 + |F,| + |F1| + -+, |F;_1]..n].
2. Find the lowest mark M; on the path.

5. SetF; = FT'[|F;| + 1] and add a mark M; to the position on the ST corresponding to F;.

— abbabaaab
= (& a)

47

Computing LZ78 by ST

B F; (i >1)canbe computed as follows:

1. Find the path on the ST representing T’ = T[1 + |F,| + |F1| + -+, |F;_1]..n].

Find the lowest mark M; on the path.

2.
Set F; = F;T'[|F;| + 1] and add a mark M; to the position on the ST corresponding to F;

3.

M,
a ——-b T' = babaaab
M,
=D a F = (ga,b,ba)
8
b ab babaaab
7 aab
6) aaab
baaab
4

babaaab
1

48

Computing LZ78 by ST

B F; (i >1)canbe computed as follows:

1. Find the path on the ST representing T’ = T[1 + |F,| + |F1| + -+, |F;_1]..n].

Find the lowest mark M; on the path.

2.
Set F; = F;T'[|F;| + 1] and add a mark M; to the position on the ST corresponding to F;.

3.

MO
a ——-b T' = baaab
M,]
=D a A2 F = (g,a,b,ba,baa)
8
b/ ab a babaaab
7
6) aaab b
4 baaab

babaaab
1

49

Computing LZ78 by ST

B F; (i >1)canbe computed as follows:

1. Find the path on the ST representing T’ = T[1 + |F,| + |F1| + -+, |F;_1]..n].

Find the lowest mark M; on the path.

2.
Set F; = F;T'[|F;| + 1] and add a mark M; to the position on the ST corresponding to F;.

3.

ab
F = (g a,b,ba, baa, ab)

I
]

babaaab

Superimposing LZ78 trie and the ST

B We superimpose the LZ78 trie on the ST.

|
. —
LA BP® F = (eabanbo)
F o F5 F
3C gj 4C
® A
C
S S
QO
@]

	スライド 1: LZ78 Substring Compression in CDAWG-compressed space
	スライド 2: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 3: Substring Compression Problem
	スライド 4: Previous Work
	スライド 5: Our Work
	スライド 6: Computing LZ78 by suffix trees (previous method)
	スライド 7: Suffix Trees (ST)
	スライド 8: LZ78 Tries
	スライド 9: Superimposing LZ78 trie onto ST
	スライド 10: Computing LZ78 by ST
	スライド 11: Computing LZ78 by ST
	スライド 12: Computing LZ78 by ST
	スライド 13: Implementation and Complexity
	スライド 14: Computing LZ78 in compressed space (proposed method)
	スライド 15: CDAWG (Compact Directed Acyclic Word Graph)
	スライド 16: Why CDAWG cannot simply replace ST?
	スライド 17: Suffix Arrays (SA)
	スライド 18: Converting LZ78 Nodes to Intervals
	スライド 19: Stabbing-Max Problem
	スライド 20: Stabbing-Max Problem
	スライド 21: Bottoleneck of Space Complexity
	スライド 22: Replacing ST/SA with CDAWG
	スライド 23: Overall Structure
	スライド 24: Conclusion
	スライド 25: Suffix Trees (ST)
	スライド 33: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 34: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 35: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 36: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 37: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 38: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 39: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 43: Suffix Trees (ST)
	スライド 44: LZ78 Tries
	スライド 45: Computing LZ78 by ST
	スライド 46: Computing LZ78 by ST
	スライド 47: Computing LZ78 by ST
	スライド 48: Computing LZ78 by ST
	スライド 49: Computing LZ78 by ST
	スライド 50: Superimposing LZ78 trie and the ST

