SPIRE2024

LZ78 Substring Compression in
CDAWG-compressed space

Hiroki Shibatal, Dominik Koppl?2
1. Kyushu University

2. University of Yamanashi

Substring Compression Problem [cormode et al., 2005]

B The compression method C is specified.

B The textT of length n is given in advance.

® We can construct an index of T before the queries.
B Queries:

® Input:twointegersl,r (1 <l<r <n)

® Output: The compressed representation C(T[L..r]).
4)
T = baaba ,(,r) =(6,10)

— Qutput is C(baaba).
NS J

Substring Compression Problem [cormode et al., 2005]

B The text T of length n is given in advance.

® We can construct an index of T before the queries.

B Queries:
® Input:twointegers,r (1 <I1<r <n)

® Output: The compressed representation C(T[L..r]).

/l Natural solution: use compression method for each query substring.\

® IttakesatleastOo(r — 1+ 1) time.

m Efficient solution: create an index for substring compression.

\The goal is to output C(T[l..7]) in time close to optimal O(C(T[L..r])]). /

Substring Compression Problem [cormode et al., 2005]

/l Natural solution: use compression method for each query substring.\

® I|ttakesatleastOo(r — 1+ 1) time.

m Efficient solution: create an index for substring compression.

\The goal is to output C(T[L..7]) in time close to optimal O(C(T[L..7])]). /

| Spaceforindex

LZ78 [Koppl, '21] 0(n) 0(c)
LZ77 [Keyller et al., ‘14] 0(n) 0(clogén)
LZ77 [Keyller et al., ‘14] 0(n'te) 0(c)

(¢ =|C(T[L..r])]| is the length of output)

LZ78 Factorization [Ziv & Lempel, '78]

The LZ78 factorization of a string T is a factorization

T — FOF1 Ff

T’ is the unfactorized part of T.
where F; (i = 1) is the longest prefix of T’ = F; ... Fr that can

be represented by F; = Fic usingsome j < iandc € X.

A concatenation of an already
computed factor and a character.

T = ab
F, F, F,
Fpa
F,b
(Fy = ¢ is the empty string)

Previous Work

We focus on LZ78 substring compression problem.

Recently, [Koppl, '21] proposed a method for LZ78 substring
compression.

B This method is time optimal but consumes 0(n) words of space.

Time/Space Complexity

Space for Working Preprocessing | Query Time
Index Space Time

[Koppl, '21] 0(n) 0(c) 0(n) 0(c)

(c =|C(T[l..7r])] is the length of the output.)

Our Work

We propose a method for LZ78 substring compression in

compressed space.

Time/Space Complexity

Space for Working Preprocessing | Query Time
Index Space Time

[Koppl, '21] 0(n) 0(c) 0(n) 0(c)
Ours 0(e) 0(c) 0(n) O(clogn)

e is the number of the edges of the CDAWG of T.

® ¢ € 0(n) holds for all strings.

® ¢ € O(logn) for Fibonacci strings.

(c =|C(T[l..7r])] is the length of the output.)

Our Work

Space for Working Preprocessing | Query Time
Index Space Time

[Koppl, '21] 0(n) 0(c) 0(n) 0(c)
Ours 0(e) 0(c) 0(n) O(clogn)

Previous method uses a suffix tree for an index.

Our method uses a CDAWG instead of a suffix tree.

3 T = abaabaac
> T/
C
g c

Computing LZ78 by suffix trees

(previous method)

previous method: Computing LZ78 by suffix trees

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of T.

T = abaabaac

previous method: Computing LZ78 by suffix trees

LZ78 Tries

LZ78 Trie: The trie consisting of all LZ78 factors of T.
B The nodes have one-to-one correspondence to the LZ78 factors.

B Computing LZ78 can be regarded as constructing a LZ78 trie.

Fy
a b
T = ab r FZ
Fy 1 F, a a
Foa F3 F4

previous method: Computing LZ78 by suffix trees

Superimposing LZ78 trie onto ST

B We can superimpose the LZ78 trie onto the ST.

® The LZ78 trieis an induced subgraph over the ST consisting
only of the LZ78 factors.

p— —

= LZ78 Trie

ST — —

previous method: Computing LZ78 by suffix trees

Overview of LZ78 Substring Compression

m We can compute LZ78 compression of T[l..7] by following procedure:
1. Initialize aLZ78 trie withone node andseti « [,j « 1.
2. Repeatthefollowing procedure untili > r.
1. Compute a new factor F; and insert F; into LZ78 trie.

2. Setiei+|F|j<j+1.

~}-Lz78 Trie

ST —

previous method: Computing LZ78 by suffix trees

Overview of LZ78 Substring Compression

m We can compute LZ78 compression of T[l..7] by following procedure:
1. Initialize aLZ78 trie withone node and seti « [,j « 1.

2. Repeatthefollowing procedure untili > r.

1. Compute a new factor F; and insert F; into LZ78 trie. The details are described later.

2. Setiei+|F|j<j+1.

} LZ78 Trie

ST —

previous method: Computing LZ78 by suffix trees

Overview of LZ78 Substring Compression

m We can compute LZ78 compression of T[l..7] by following procedure:
1. Initialize aLZ78 trie withone node and seti « [,j « 1.

2. Repeatthefollowing procedure untili > r.

1. Compute a new factor F; and insert F; into LZ78 trie. The details are described later.

} LZ78 Trie

2. Setiei+|F|j<j+1.

ST —

previous method: Computing LZ78 by suffix trees

Overview of LZ78 Substring Compression

m We can compute LZ78 compression of T[l..7] by following procedure:
1. Initialize aLZ78 trie withone node and seti « [,j « 1.

2. Repeatthefollowing procedure untili > r.

1. Compute a new factor F; and insert F; into LZ78 trie. The details are described later.

} LZ78 Trie

2. Setiei+|F|j<j+1.

ST —

previous method: Computing LZ78 by suffix trees

Overview of LZ78 Substring Compression

m We can compute LZ78 compression of T[l..7] by following procedure:
1. Initialize aLZ78 trie withone node and seti « [,j « 1.
2. Repeatthefollowing procedure untili > r.
1. Compute a new factor F; and insert F; into LZ78 trie.

2. Setiei+|F|j<j+1.

= LZ78 Trie of T[L..7]

ST — —

previous method: Computing LZ78 by suffix trees

Computing the new factor by ST

B The new factor F; starting from the position i is computed as follows:

1. Find the leaf corresponding to the position i.
2. Find the lowest LZ78 node on the path.
3. Add an LZ78 node F; immediately below the lowest LZ78 node.

= LZ78 Trie

ST — —

T|i..n]

previous method: Computing LZ78 by suffix trees

Computing the new factor by ST

B The new factor F; starting from the position i is computed as follows:

1. Find the leaf corresponding to the position i.
2. Find the lowest LZ78 node on the path.
3. Add an LZ78 node F; immediately below the lowest LZ78 node.

= LZ78 Trie

ST — —

T|i..n]

previous method: Computing LZ78 by suffix trees

Computing the new factor by ST

B The new factor F; starting from the position i is computed as follows:

1. Find the leaf corresponding to the position i.
2. Find the lowest LZ78 node on the path.
3. Add an LZ78 node F; immediately below the lowest LZ78 node.

= LZ78 Trie

ST —

previous method: Computing LZ78 by suffix trees

Required Data Structures

B These operations requires some data structure:

® Nearest Marked Ancestor: To find the lowest LZ78 node

= LZ78 Trie

previous method: Computing LZ78 by suffix trees

Required Data Structures

B These operations requires some data structure:

® Weighted Level Ancestor: To find the position on the path

immediately below the lowest LZ78 node

— —

= LZ78 Trie

ST — —

previous method: Computing LZ78 by suffix trees

Implementation and Complexity

Required data structures:

® Lowest Marked Ancestor [Westbrook, 1992]
A amortized O(1) time / query
® Weighted Level Ancestor [Gawrychowski et al., 2014]

A O(1) time/ query

Time / Space complexity
® Each data structure can be stored in 0(n) words.

® We can find the lowest factor and add a factor in constant time per factor.

B Overall Complexity = 0(n) words * 0(c) time /[query

(cisthe number of LZ78 factors of T[l..7])

24

Computing LZ78 using a stabbing-max structure

(Intermediate method)

Intermediate method : Computing LZ78 using a stabbing-max data structure

Suffix Arrays (SA)

The suffix array stores the lexicographic order of all suffixes.

® Since the leaves have a one-to-one correspondence to all suffixes,
the SA represents the order of the leaves.

® One leaf of the ST corresponds to one position on the SA.

— —

= LZ78 Trie

ST — -

Note: We can guarantee that each
suffix corresponds to a leaf node by
adding a unique character at the
SA end of T.

Intermediate method : Computing LZ78 using a stabbing-max data structure

Converting LZ78 Nodes to Intervals

Each LZ78 node corresponds to an interval on SA.

— The set of all LZ78 nodes can be represented by the set of intervals.

— —

= LZ78 Trie

ST — —

—

SA
LZ78 intervals Y |

Intermediate method : Computing LZ78 using a stabbing-max data structure

Converting LZ78 Nodes to Intervals

Each LZ78 node corresponds to an interval on SA.

— The set of all LZ78 nodes can be represented by the set of intervals.

— —

= LZ78 Trie

ST — —

—

SA

LZ78 intervals: —
o E— 1

Intermediate method : Computing LZ78 using a stabbing-max data structure ;

Converting LZ78 Nodes to Intervals

Finding lowest LZ78 node on the path corresponds to find the interval

containing the specific position whose weight is maximum.

ge—

ST —

SA
LZ78 intervals

= LZ78 Trie

weight (depths of LZ78 nodes)

Intermediate method : Computing LZ78 using a stabbing-max data structure

Converting LZ78 Nodes to Intervals

Adding an LZ78 node corresponds to add an interval representing a

new LZ78 node.

= LZ78 Trie

ST —

SA i
L278intervalsf — R re— — l weight (depths of LZ78 nodes)

Intermediate method : Computing LZ78 using a stabbing-max data structure 5,

Stabbing-Max Problem

Computing a LZ78 factor can be reduced to the following queries and operations:

1. Findtheintervall[a, b] € S containing k whose weight is maximum.

® Corresponding to find the lowest LZ78 node.

2. Add aninterval[a, b] with weight w to a set S.
® Corresponding to add an LZ78 node.

Intermediate method : Computing LZ78 using a stabbing-max data structure

Stabbing-Max Problem

Computing a LZ78 factor can be reduced to the following queries and
operations:

1. Find theinterval [a, b] € S containing k whose weight is maximum.

2. Add aninterval [a, b] with weight w to a set S.

This problem is known as the stabbing-max problem, and there is a data

structure that performs any query with the following complexity [Tarjan,
1979]:

B Add/Find aninterval: 0(log m) time [query

B Space complexity: 0(m) words
(m is the number of intervals)

Computing LZ78 in compressed space

(proposed method)

32

proposed method: Computing LZ78 by CDAWGS 33

Bottleneck of Space Complexity

Now, our data structure uses O(n) space because of the ST and the SA.

To reduce the space, we need to compute LZ78 factors without them.

— —

= LZ Trie: 0(c)

ST: G)(n) — —

SA: O(n)

stabbing-max: 0(¢) 0 J
Y Note: c € O0(n)

proposed method: Computing LZ78 by CDAWGS 34

Required operations

Our method depends on some operations:
® Obtaining T[i].
® Computing the leaf corresponding to TTi..n].

® Computing the interval corresponding to T[L..r].

Without ST/SA and the text, we cannot perform these queries.

— We use a data structure that simulates ST/SA.

proposed method: Computing LZ78 by CDAWGS

CDAWG (Compact Directed Acyclic Word Graph)

CDAWG: The edge-labelled DAG which obtained by merging
isomorphic subtrees of the corresponding ST.

m Property: The number ¢ of edges of the CDAWG is small for some highly
repetitive strings.

— CDAWG can be regarded as a compressed representation of STs.

proposed method: Computing LZ78 by CDAWGS

Replacing ST/SA with CDAWG

Since CDAWG is a compacted variant of ST, some CDAWG-based indexes
efficiently performs ST/SA operation.

There is a CDAWG-based index that simulate ST in 0(logn) time and

is stored in O(e) space. [Bealazzougui and Cunial, CPM 2017]

pm— —

— LZ78 Trie

ST = - CDAWG

—

SA
stabbing-max ! :

proposed method: Computing LZ78 by CDAWGS

Overall Structure

Our method only uses the CDAWG and the stabbing-max structure.
B Space forindex: O(e) words
m Working space for queries: 0(c) words

@ CDAWG: 0(e)
I \ I

B Querytime: O(clogn)

SA (implicit)
stabbing-max: 0(¢)

38

Conclusion

m We proposed a method for LZ78 substring compression in

compressed space.

B Some applications:
® We canreplace the CDAWG by some other compressed index.

® Applying this method for other LZ78-like compressions. (LZD, LZMW)

Time/Space Complexity

Space for Working Preprocessing | Query Time
Index Space Time

[Koppl, '21] 0(n) 0(c) 0(n) 0(c)
Ours 0(e) 0(c) 0(n) O(clogn)

	スライド 1: LZ78 Substring Compression in CDAWG-compressed space
	スライド 2: Substring Compression Problem [Cormode et al., 2005]
	スライド 3: Substring Compression Problem [Cormode et al., 2005]
	スライド 4: Substring Compression Problem [Cormode et al., 2005]
	スライド 5: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 6: Previous Work
	スライド 7: Our Work
	スライド 8: Our Work
	スライド 9: Computing LZ78 by suffix trees (previous method)
	スライド 10: Suffix Trees (ST)
	スライド 11: LZ78 Tries
	スライド 12: Superimposing LZ78 trie onto ST
	スライド 13: Overview of LZ78 Substring Compression
	スライド 14: Overview of LZ78 Substring Compression
	スライド 15: Overview of LZ78 Substring Compression
	スライド 16: Overview of LZ78 Substring Compression
	スライド 17: Overview of LZ78 Substring Compression
	スライド 18: Computing the new factor by ST
	スライド 19: Computing the new factor by ST
	スライド 20: Computing the new factor by ST
	スライド 21: Required Data Structures
	スライド 22: Required Data Structures
	スライド 23: Implementation and Complexity
	スライド 24: Computing LZ78 using a stabbing-max structure (Intermediate method)
	スライド 25: Suffix Arrays (SA)
	スライド 26: Converting LZ78 Nodes to Intervals
	スライド 27: Converting LZ78 Nodes to Intervals
	スライド 28: Converting LZ78 Nodes to Intervals
	スライド 29: Converting LZ78 Nodes to Intervals
	スライド 30: Stabbing-Max Problem
	スライド 31: Stabbing-Max Problem
	スライド 32: Computing LZ78 in compressed space (proposed method)
	スライド 33: Bottleneck of Space Complexity
	スライド 34: Required operations
	スライド 35: CDAWG (Compact Directed Acyclic Word Graph)
	スライド 36: Replacing ST/SA with CDAWG
	スライド 37: Overall Structure
	スライド 38: Conclusion

