
LZ78 Substring Compression in
CDAWG-compressed space

Hiroki Shibata1, Dominik Köppl2

1. Kyushu University

2. University of Yamanashi

SPIRE2024

2

Substring Compression Problem [Cormode et al., 2005]

◼ The compression method 𝐶 is specified.

◼ The text 𝑇 of length 𝑛 is given in advance.

⚫ We can construct an index of 𝑇 before the queries.

◼ Queries:

⚫ Input: two integers 𝑙, 𝑟 (1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛)

⚫ Output: The compressed representation 𝐶(𝑇 𝑙. . 𝑟).

𝑇 = acbaabaabacaab, 𝑙, 𝑟 = 6, 10

→ Output is 𝐶(baaba).

3

Substring Compression Problem [Cormode et al., 2005]

◼ The text 𝑇 of length 𝑛 is given in advance.

⚫ We can construct an index of 𝑇 before the queries.

◼ Queries:

⚫ Input: two integers 𝑙, 𝑟 (1 ≤ 𝑙 ≤ 𝑟 ≤ 𝑛)

⚫ Output: The compressed representation 𝐶(𝑇 𝑙. . 𝑟).

◼ Natural solution: use compression method for each query substring.

⚫ It takes at least 𝑂 𝑟 − 𝑙 + 1 time.

◼ Efficient solution: create an index for substring compression.

The goal is to output 𝐶 𝑇 𝑙. . 𝑟 in time close to optimal 𝑂(𝐶 𝑇 𝑙. . 𝑟 |).

4

Substring Compression Problem [Cormode et al., 2005]

◼ Natural solution: use compression method for each query substring.

⚫ It takes at least 𝑂 𝑟 − 𝑙 + 1 time.

◼ Efficient solution: create an index for substring compression.

The goal is to output 𝐶 𝑇 𝑙. . 𝑟 in time close to optimal 𝑂(𝐶 𝑇 𝑙. . 𝑟 |).

Space for Index Query Time

LZ78 [Köppl, '21] 𝑂 𝑛 𝑂 𝑐

LZ77 [Keyller et al., ‘14] 𝑂 𝑛 𝑂 𝑐 log𝜀 𝑛

LZ77 [Keyller et al., ‘14] 𝑂 𝑛1+𝜀 𝑂 𝑐

(𝑐 = |𝐶 𝑇 𝑙. . 𝑟 | is the length of output)

5

LZ78 Factorization [Ziv & Lempel, '78]

The LZ78 factorization of a string 𝑇 is a factorization

 𝑇 = 𝐹0𝐹1 … 𝐹𝑓

where 𝐹𝑖 𝑖 ≥ 1 is the longest prefix of 𝑇′ = 𝐹𝑖 … 𝐹𝑓 that can

be represented by 𝐹𝑖 = 𝐹𝑗𝑐 using some 𝑗 < 𝑖 and 𝑐 ∈ Σ.

𝑇 = a b aa ba bac

(𝐹0 = 𝜀 is the empty string)

𝑇′ is the unfactorized part of 𝑇.

A concatenation of an already
computed factor and a character.

𝐹0 𝐹4𝐹1 𝐹2 𝐹3 𝐹5

𝐹2a
𝐹0a

𝐹0b
𝐹1a 𝐹4c

6

Previous Work

Time/Space Complexity

We focus on LZ78 substring compression problem.

Recently, [Köppl, '21] proposed a method for LZ78 substring

compression.

◼ This method is time optimal but consumes 𝑂 𝑛 words of space.

Space for
Index

Working
Space

Preprocessing
Time

Query Time

[Köppl, '21] 𝑂 𝑛 𝑂 𝑐 𝑂 𝑛 𝑂 𝑐

(𝑐 = |𝐶 𝑇 𝑙. . 𝑟 | is the length of the output.)

7

Our Work

𝑒 is the number of the edges of the CDAWG of 𝑇.

⚫ 𝑒 ∈ 𝑂(𝑛) holds for all strings.

⚫ 𝑒 ∈ Θ(log 𝑛) for Fibonacci strings.

Space for
Index

Working
Space

Preprocessing
Time

Query Time

[Köppl, '21] 𝑂 𝑛 𝑂 𝑐 𝑂 𝑛 𝑂 𝑐

Ours 𝑂 𝑒 𝑂 𝑐 𝑂 𝑛 𝑂 𝑐 log 𝑛

Time/Space Complexity

We propose a method for LZ78 substring compression in

compressed space.

(𝑐 = |𝐶 𝑇 𝑙. . 𝑟 | is the length of the output.)

8

Our Work

Previous method uses a suffix tree for an index.

Our method uses a CDAWG instead of a suffix tree.

𝑇 = abaabaaca

c c

a

c

a

b
aa

c

a

c

c

c
c

3

5

6

4

8

1
2

7

b
aac

b
aac

b
aac

b
aa

b
aac

b
aa

b
aa

Space for
Index

Working
Space

Preprocessing
Time

Query Time

[Köppl, '21] 𝑂 𝑛 𝑂 𝑐 𝑂 𝑛 𝑂 𝑐

Ours 𝑂 𝑒 𝑂 𝑐 𝑂 𝑛 𝑂 𝑐 log 𝑛

9

Computing LZ78 by suffix trees

(previous method)

10

Suffix Trees (ST)

Suffix Tree: The compact trie representing all suffixes of 𝑇.

𝑇 = abaabaac

a

a

c

b
aac

c

c

c

3

6

4

8

1

7

2

c

5b
aac

b
aac

b
aab

aac

previous method: Computing LZ78 by suffix trees

11

LZ78 Tries

a
𝐹0

𝐹1 𝐹2

𝐹3 𝐹4

a

b

a

𝐹5

c

𝑇 = a b aa ba bac
𝐹0 𝐹4𝐹1 𝐹2 𝐹3 𝐹5

𝐹2a
𝐹0a

𝐹0b
𝐹1a 𝐹4c

LZ78 Trie: The trie consisting of all LZ78 factors of 𝑇.

◼ The nodes have one-to-one correspondence to the LZ78 factors.

◼ Computing LZ78 can be regarded as constructing a LZ78 trie.

previous method: Computing LZ78 by suffix trees

12

Superimposing LZ78 trie onto ST

◼ We can superimpose the LZ78 trie onto the ST.

⚫ The LZ78 trie is an induced subgraph over the ST consisting

only of the LZ78 factors.

LZ78 Trie

ST

previous method: Computing LZ78 by suffix trees

13

Overview of LZ78 Substring Compression

◼ We can compute LZ78 compression of 𝑇 𝑙. . 𝑟 by following procedure:

1. Initialize a LZ78 trie with one node and set 𝑖 ← 𝑙, 𝑗 ← 1.

2. Repeat the following procedure until 𝑖 ≥ 𝑟.

1. Compute a new factor 𝐹𝑗 and insert 𝐹𝑗 into LZ78 trie.

2. Set 𝑖 ← 𝑖 + 𝐹𝑗 , 𝑗 ← 𝑗 + 1.

LZ78 Trie

ST

previous method: Computing LZ78 by suffix trees

14

Overview of LZ78 Substring Compression

◼ We can compute LZ78 compression of 𝑇 𝑙. . 𝑟 by following procedure:

1. Initialize a LZ78 trie with one node and set 𝑖 ← 𝑙, 𝑗 ← 1.

2. Repeat the following procedure until 𝑖 ≥ 𝑟.

1. Compute a new factor 𝐹𝑗 and insert 𝐹𝑗 into LZ78 trie.

2. Set 𝑖 ← 𝑖 + 𝐹𝑗 , 𝑗 ← 𝑗 + 1.

LZ78 Trie

ST

The details are described later.

previous method: Computing LZ78 by suffix trees

15

Overview of LZ78 Substring Compression

◼ We can compute LZ78 compression of 𝑇 𝑙. . 𝑟 by following procedure:

1. Initialize a LZ78 trie with one node and set 𝑖 ← 𝑙, 𝑗 ← 1.

2. Repeat the following procedure until 𝑖 ≥ 𝑟.

1. Compute a new factor 𝐹𝑗 and insert 𝐹𝑗 into LZ78 trie.

2. Set 𝑖 ← 𝑖 + 𝐹𝑗 , 𝑗 ← 𝑗 + 1.

LZ78 Trie

ST

The details are described later.

previous method: Computing LZ78 by suffix trees

16

Overview of LZ78 Substring Compression

◼ We can compute LZ78 compression of 𝑇 𝑙. . 𝑟 by following procedure:

1. Initialize a LZ78 trie with one node and set 𝑖 ← 𝑙, 𝑗 ← 1.

2. Repeat the following procedure until 𝑖 ≥ 𝑟.

1. Compute a new factor 𝐹𝑗 and insert 𝐹𝑗 into LZ78 trie.

2. Set 𝑖 ← 𝑖 + 𝐹𝑗 , 𝑗 ← 𝑗 + 1.

LZ78 Trie

ST

The details are described later.

previous method: Computing LZ78 by suffix trees

17

Overview of LZ78 Substring Compression

◼ We can compute LZ78 compression of 𝑇 𝑙. . 𝑟 by following procedure:

1. Initialize a LZ78 trie with one node and set 𝑖 ← 𝑙, 𝑗 ← 1.

2. Repeat the following procedure until 𝑖 ≥ 𝑟.

1. Compute a new factor 𝐹𝑗 and insert 𝐹𝑗 into LZ78 trie.

2. Set 𝑖 ← 𝑖 + 𝐹𝑗 , 𝑗 ← 𝑗 + 1.

LZ78 Trie of 𝑇 𝑙. . 𝑟

ST

previous method: Computing LZ78 by suffix trees

18

Computing the new factor by ST

LZ78 Trie

ST

◼ The new factor 𝐹𝑗 starting from the position 𝑖 is computed as follows:

1. Find the leaf corresponding to the position 𝑖.

2. Find the lowest LZ78 node on the path.

3. Add an LZ78 node 𝐹𝑗 immediately below the lowest LZ78 node.

previous method: Computing LZ78 by suffix trees

𝑖

𝑇 𝑖. . 𝑛

19

Computing the new factor by ST

LZ78 Trie

ST

◼ The new factor 𝐹𝑗 starting from the position 𝑖 is computed as follows:

1. Find the leaf corresponding to the position 𝑖.

2. Find the lowest LZ78 node on the path.

3. Add an LZ78 node 𝐹𝑗 immediately below the lowest LZ78 node.

𝑇 𝑖. . 𝑛

previous method: Computing LZ78 by suffix trees

𝑖

20

Computing the new factor by ST

ST

LZ78 Trie

◼ The new factor 𝐹𝑗 starting from the position 𝑖 is computed as follows:

1. Find the leaf corresponding to the position 𝑖.

2. Find the lowest LZ78 node on the path.

3. Add an LZ78 node 𝐹𝑗 immediately below the lowest LZ78 node.

𝐹𝑗

previous method: Computing LZ78 by suffix trees

𝑖

𝑇 𝑖. . 𝑛

21

Required Data Structures

◼ These operations requires some data structure:

⚫ Nearest Marked Ancestor: To find the lowest LZ78 node

⚫ Weighted Level Ancestor: To find the position on the path

immediately below the lowest LZ78 node

LZ78 Trie

ST

previous method: Computing LZ78 by suffix trees

22

Required Data Structures

◼ These operations requires some data structure:

⚫ Nearest Marked Ancestor: To find the lowest LZ78 node

⚫ Weighted Level Ancestor: To find the position on the path

immediately below the lowest LZ78 node

ST

LZ78 Trie

previous method: Computing LZ78 by suffix trees

23

Implementation and Complexity

Required data structures:

⚫ Lowest Marked Ancestor [Westbrook, 1992]

▲ amortized O(1) time / query

⚫ Weighted Level Ancestor [Gawrychowski et al., 2014]

▲ O(1) time / query

Time / Space complexity

⚫ Each data structure can be stored in 𝑂 𝑛 words.

⚫ We can find the lowest factor and add a factor in constant time per factor.

◼ Overall Complexity ⇒ 𝑂 𝑛 words ・ 𝑂 𝑐 time / query

(𝑐 is the number of LZ78 factors of 𝑇[𝑙. . 𝑟])

previous method: Computing LZ78 by suffix trees

24

Computing LZ78 using a stabbing-max structure

(Intermediate method)

25

Suffix Arrays (SA)

The suffix array stores the lexicographic order of all suffixes.

⚫ Since the leaves have a one-to-one correspondence to all suffixes,

the SA represents the order of the leaves.

⚫ One leaf of the ST corresponds to one position on the SA.

ST

LZ78 Trie

SA

Note: We can guarantee that each
suffix corresponds to a leaf node by
adding a unique character at the
end of 𝑇.

Intermediate method : Computing LZ78 using a stabbing-max data structure

26

Converting LZ78 Nodes to Intervals

Each LZ78 node corresponds to an interval on SA.

→ The set of all LZ78 nodes can be represented by the set of intervals.

LZ78 Trie

ST

SA

LZ78 intervals

Intermediate method : Computing LZ78 using a stabbing-max data structure

27

Converting LZ78 Nodes to Intervals

Each LZ78 node corresponds to an interval on SA.

→ The set of all LZ78 nodes can be represented by the set of intervals.

LZ78 Trie

ST

SA

LZ78 intervals

Intermediate method : Computing LZ78 using a stabbing-max data structure

28

Converting LZ78 Nodes to Intervals

Finding lowest LZ78 node on the path corresponds to find the interval

containing the specific position whose weight is maximum.

SA

LZ78 intervals

LZ78 Trie

ST

weight (depths of LZ78 nodes)

0

4

Intermediate method : Computing LZ78 using a stabbing-max data structure

𝑖

𝑖

29

Converting LZ78 Nodes to Intervals

Adding an LZ78 node corresponds to add an interval representing a

new LZ78 node.

SA

LZ78 intervals weight (depths of LZ78 nodes)

0

5

ST

LZ78 Trie

Intermediate method : Computing LZ78 using a stabbing-max data structure

𝑖

𝑖

30

Stabbing-Max Problem

Computing a LZ78 factor can be reduced to the following queries and operations:

1. Find the interval 𝑎, 𝑏 ∈ 𝑆 containing 𝑘 whose weight is maximum.

⚫ Corresponding to find the lowest LZ78 node.

2. Add an interval 𝑎, 𝑏 with weight 𝑤 to a set 𝑆.

⚫ Corresponding to add an LZ78 node.

1 8

𝑤 = 1

𝑤 = 2

6

𝑤 = 1

𝑤 = 0

Intermediate method : Computing LZ78 using a stabbing-max data structure

31

Stabbing-Max Problem

Computing a LZ78 factor can be reduced to the following queries and

operations:

1. Find the interval 𝑎, 𝑏 ∈ 𝑆 containing 𝑘 whose weight is maximum.

2. Add an interval 𝑎, 𝑏 with weight 𝑤 to a set 𝑆.

This problem is known as the stabbing-max problem, and there is a data

structure that performs any query with the following complexity [Tarjan,

1979]:

◼ Add/Find an interval: 𝑂(log 𝑚) time / query

◼ Space complexity: 𝑂(𝑚) words
(𝑚 is the number of intervals)

Intermediate method : Computing LZ78 using a stabbing-max data structure

32

Computing LZ78 in compressed space

(proposed method)

33

Bottleneck of Space Complexity

Now, our data structure uses Θ(𝑛) space because of the ST and the SA.

To reduce the space, we need to compute LZ78 factors without them.

LZ Trie: Θ(𝑐)

ST: Θ(𝑛)

SA: Θ(𝑛)

stabbing-max: Θ(𝑐)
Note: 𝑐 ∈ 𝑂(𝑛)

proposed method: Computing LZ78 by CDAWGs

34

Required operations

proposed method: Computing LZ78 by CDAWGs

Our method depends on some operations:

⚫ Obtaining 𝑇 𝑖 .

⚫ Computing the leaf corresponding to 𝑇 𝑖. . 𝑛 .

⚫ Computing the interval corresponding to 𝑇[𝑙. . 𝑟].

Without ST/SA and the text, we cannot perform these queries.

→ We use a data structure that simulates ST/SA.

35

CDAWG (Compact Directed Acyclic Word Graph)

CDAWG: The edge-labelled DAG which obtained by merging

isomorphic subtrees of the corresponding ST.

◼ Property: The number 𝑒 of edges of the CDAWG is small for some highly

repetitive strings.

→ CDAWG can be regarded as a compressed representation of STs.

𝑇 = abaabaaca

c c

a

c

a

b
aa

c

a

c

c

c
c

3

5

6

4

8

1
2

7

b
aac

b
aac

b
aac

b
aa

b
aac

b
aa

b
aa

proposed method: Computing LZ78 by CDAWGs

36

Replacing ST/SA with CDAWG

Since CDAWG is a compacted variant of ST, some CDAWG-based indexes

efficiently performs ST/SA operation.

There is a CDAWG-based index that simulate ST in 𝑂(log 𝑛) time and

is stored in 𝑂 𝑒 space. [Bealazzougui and Cunial, CPM 2017]

LZ78 Trie

ST

SA

stabbing-max

CDAWG

proposed method: Computing LZ78 by CDAWGs

37

Overall Structure

stabbing-max: Θ(𝑐)

CDAWG: Θ(𝑒)

SA (implicit)

Our method only uses the CDAWG and the stabbing-max structure.

◼ Space for index: Θ(𝑒) words

◼ Working space for queries: Θ(𝑐) words

◼ Query time: 𝑂(𝑐 log 𝑛)

proposed method: Computing LZ78 by CDAWGs

38

Conclusion

◼ We proposed a method for LZ78 substring compression in

compressed space.

◼ Some applications:

⚫ We can replace the CDAWG by some other compressed index.

⚫ Applying this method for other LZ78-like compressions. (LZD, LZMW)

Space for
Index

Working
Space

Preprocessing
Time

Query Time

[Köppl, '21] 𝑂 𝑛 𝑂 𝑐 𝑂 𝑛 𝑂 𝑐

Ours 𝑂 𝑒 𝑂 𝑐 𝑂 𝑛 𝑂 𝑐 log 𝑛

Time/Space Complexity

	スライド 1: LZ78 Substring Compression in CDAWG-compressed space
	スライド 2: Substring Compression Problem [Cormode et al., 2005]
	スライド 3: Substring Compression Problem [Cormode et al., 2005]
	スライド 4: Substring Compression Problem [Cormode et al., 2005]
	スライド 5: LZ78 Factorization [Ziv & Lempel, '78]
	スライド 6: Previous Work
	スライド 7: Our Work
	スライド 8: Our Work
	スライド 9: Computing LZ78 by suffix trees (previous method)
	スライド 10: Suffix Trees (ST)
	スライド 11: LZ78 Tries
	スライド 12: Superimposing LZ78 trie onto ST
	スライド 13: Overview of LZ78 Substring Compression
	スライド 14: Overview of LZ78 Substring Compression
	スライド 15: Overview of LZ78 Substring Compression
	スライド 16: Overview of LZ78 Substring Compression
	スライド 17: Overview of LZ78 Substring Compression
	スライド 18: Computing the new factor by ST
	スライド 19: Computing the new factor by ST
	スライド 20: Computing the new factor by ST
	スライド 21: Required Data Structures
	スライド 22: Required Data Structures
	スライド 23: Implementation and Complexity
	スライド 24: Computing LZ78 using a stabbing-max structure (Intermediate method)
	スライド 25: Suffix Arrays (SA)
	スライド 26: Converting LZ78 Nodes to Intervals
	スライド 27: Converting LZ78 Nodes to Intervals
	スライド 28: Converting LZ78 Nodes to Intervals
	スライド 29: Converting LZ78 Nodes to Intervals
	スライド 30: Stabbing-Max Problem
	スライド 31: Stabbing-Max Problem
	スライド 32: Computing LZ78 in compressed space (proposed method)
	スライド 33: Bottleneck of Space Complexity
	スライド 34: Required operations
	スライド 35: CDAWG (Compact Directed Acyclic Word Graph)
	スライド 36: Replacing ST/SA with CDAWG
	スライド 37: Overall Structure
	スライド 38: Conclusion

