SOFSEM2025

Packed Acyclic Deterministic Finite Automata

<u>Hiroki Shibata¹</u>, Masakazu Ishihata², Shunsuke Inenaga¹

^{1.} Kyushu University

^{2.} NTT Communication Science Laboratories

Overview

- Pattern-searching: the problem of deciding whether the input pattern is in a dictionary (a set of strings)
 - Pattern-searching index: an index structure supporting efficient pattern-searching queries.
- ADFA: a compact pattern-searching index
- Packed string: storing multiple characters in one machine word

Our method: Packed ADFA

- Performing pattern-searching in $O\left(\frac{|P|}{\alpha} + \lg k\right)$ time
- More compact than trie-based indexes

Pattern-searching

- Dictionary: a set of strings $S = \{S_1, ..., S_k\}$
- Pattern-searching: the problem of deciding whether $P \in S$ (P: pattern string)



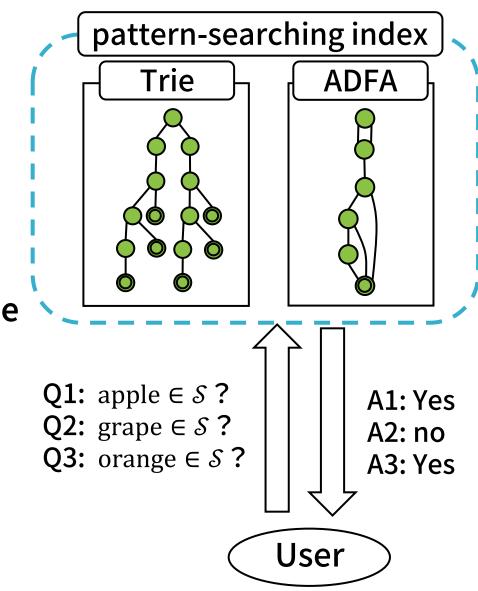
Pattern-searching index

Pattern-searching index: an index structure storing a dictionary S and can answer pattern-searching queries efficiently for S.

■ It is effective if there are many queries with the same dictionary and different patterns.

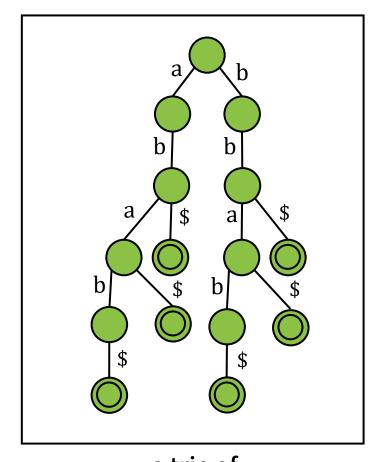
Famous pattern-searching indexes:

- Trie: a tree-formed index
- ADFA: a <u>DAG-formed</u> index



Trie: a tree-formed pattern-searching index

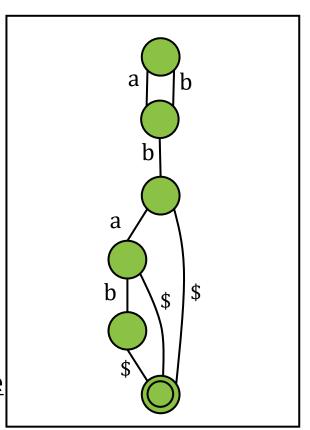
- Each path from the root to an accepting state represents a string
- Supports efficient pattern searching query
- Easy to handle and allows for the use of various techniques due to its tree structure
 - e.g. centroid path decomposition, Euler tour



a trie of {abab\$, aba\$, ab\$, bba\$, bba\$, bb\$}

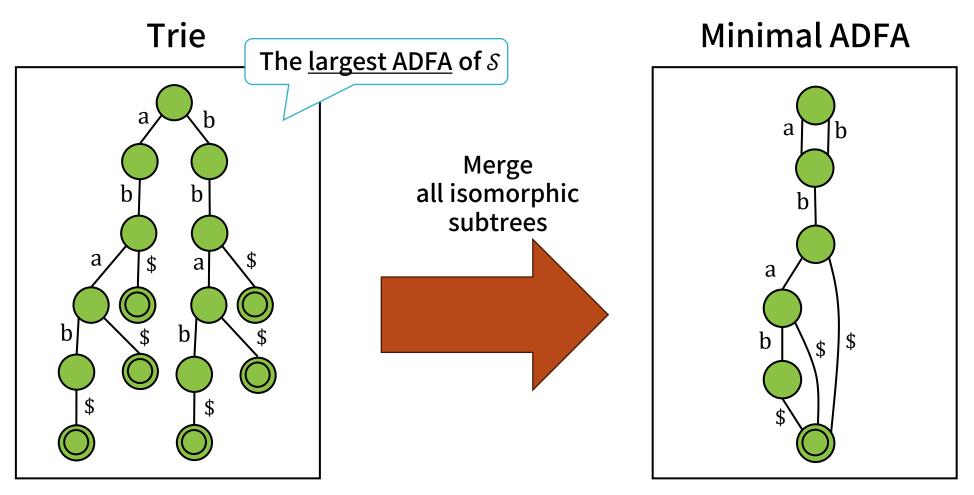
ADFA: a DAG-formed pattern-searching index

- Each path from root to an accepting state represents a string
- Supports efficient pattern searching query
- Is a generalization of trie
 - Advantage of generalization: it can be <u>more compact</u> than a trie
 - Disadvantage: efficient tree algorithms are not directly applicable due to its DAG structure



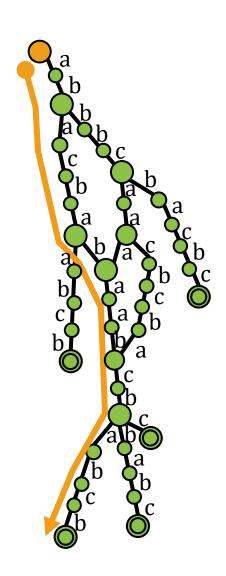
a ADFA of {abab\$, aba\$, ab\$, bba\$, bba\$, bb\$}

A relationship between trie and minimal ADFA

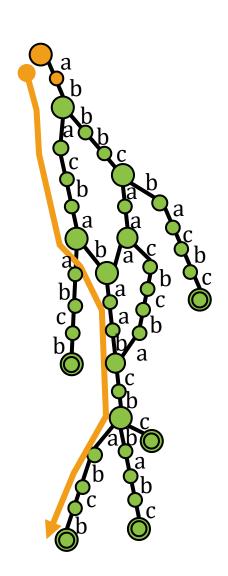


 $S = \{abab\$, aba\$, ab\$, bbab\$, bba\$, bb\$\}$

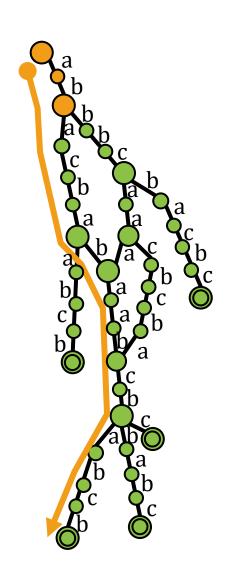
- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - Ex. Pattern: P = abacbabaabcbabcb



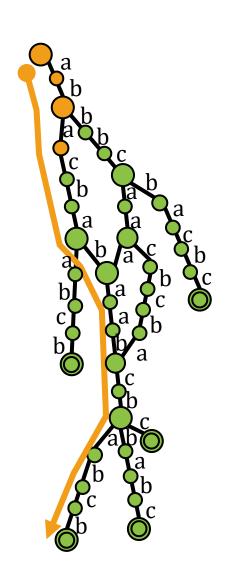
- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - Ex. Pattern: P = abacbabaabcbabcb



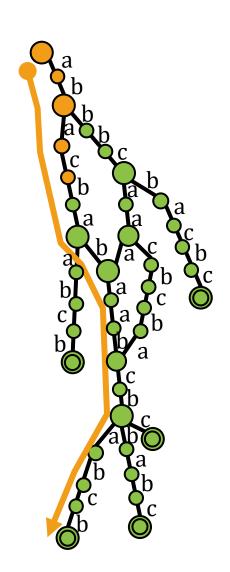
- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - Ex. Pattern: P = abacbabaabcbabcb



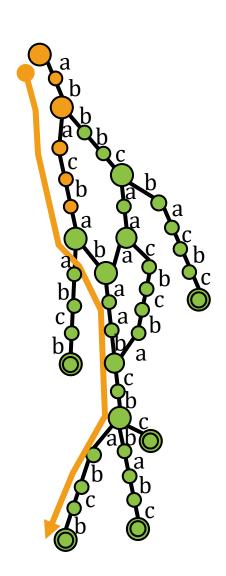
- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - Ex. Pattern: P = abacbabaabcbabcb



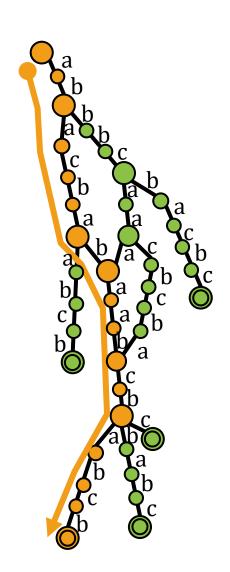
- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - Ex. Pattern: P = abacbabaabcbabcb



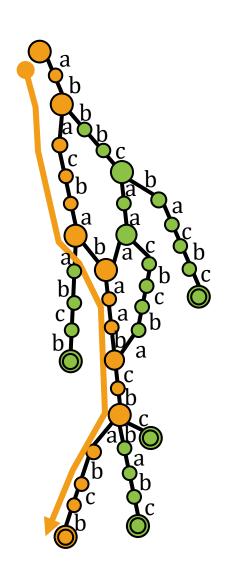
- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - Ex. Pattern: P = abacbabaabcbabcb



- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - **Ex.** Pattern: *P* = abacbabaabcbabcb

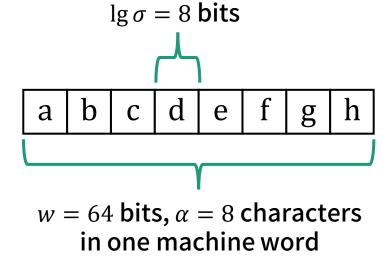


- Pattern searching algorithm:
 - 1. Let $v \leftarrow \text{root and } i \leftarrow 1$.
 - 2. While $i \leq |P|$, repeat the following procedure:
 - 1. Find the edge starting from v labeled by P[i].
 - If there is no such edge, return "No".
 - 2. Move v along the edge and set $i \leftarrow i + 1$.
 - 3. Return "Yes" iff v is an acceptable state.
 - \rightarrow Overall time complexity: $\Omega(|P|)$



Packed string: storing multiple characters into a single machine word

- Modern computers have <u>64~512-bit</u> registers.
- The bit-width for one character is <u>typically less</u> than the bit-width of registers.
 - e.g. 8bits for ASCII, 2bits for nucleotides.

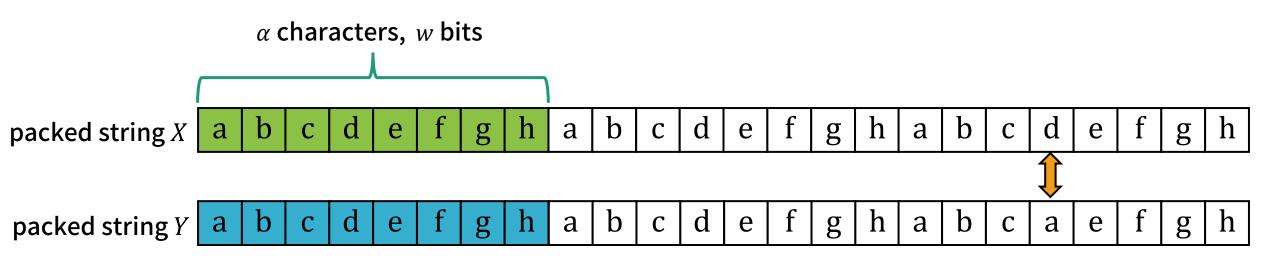


We can pack $\alpha = \frac{w}{\lg \sigma}$ characters into a single machine word (packed string).

Efficient comparison using packed strings

Packed string allows comparing consecutive α characters at once.

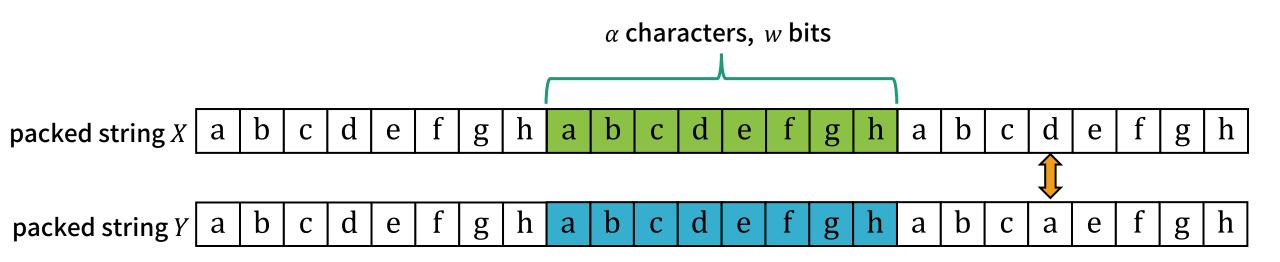
We can find the first mismatched index p of two packed strings in $O\left(\frac{p}{\alpha}\right)$ time.



Efficient comparison using packed strings

Packed string allows comparing consecutive α characters at once.

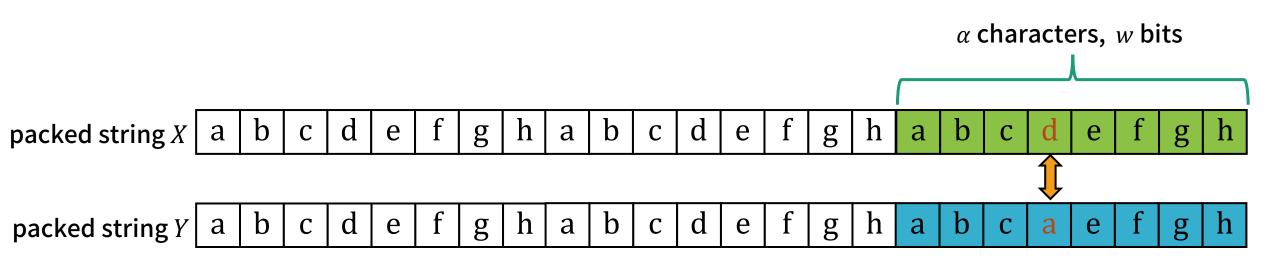
We can find the first mismatched index p of two packed strings in $O\left(\frac{p}{\alpha}\right)$ time.



Efficient comparison using packed strings

Packed string allows comparing consecutive α characters at once.

We can find the first mismatched index p of two packed strings in $O\left(\frac{p}{\alpha}\right)$ time.



Combining pattern-searching indexes and packed string

- Trie: several methods for applying packed string have been proposed
 - applying centroid path decomposition for speeding up in cache-oblivious model
 [Ferragina et al., 2008]
 - decomposition into micro trees of O(w) size [Takagi et al., 2017]

- ADFA: <u>there is no method</u> for combining packed strings and ADFAs
 - Because all packed string methods for tries <u>rely on its tree structure</u>.

Our work: Packed ADFA

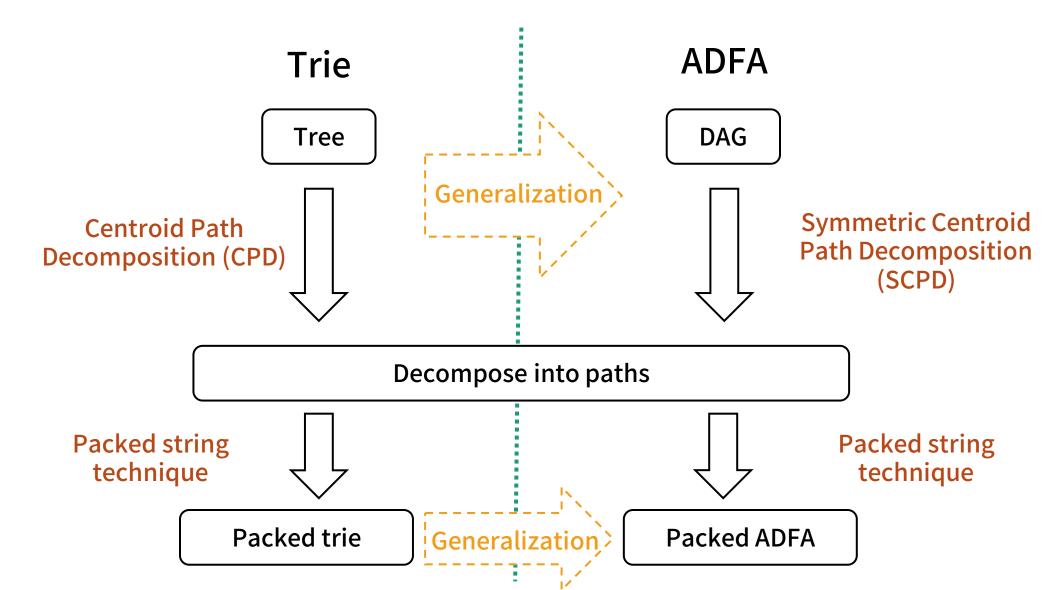
We propose packed ADFA: ADFA-based pattern-searching index with packed string.

Main advantages of Packed ADFA:

It is optimal when *P* is sufficiently long.

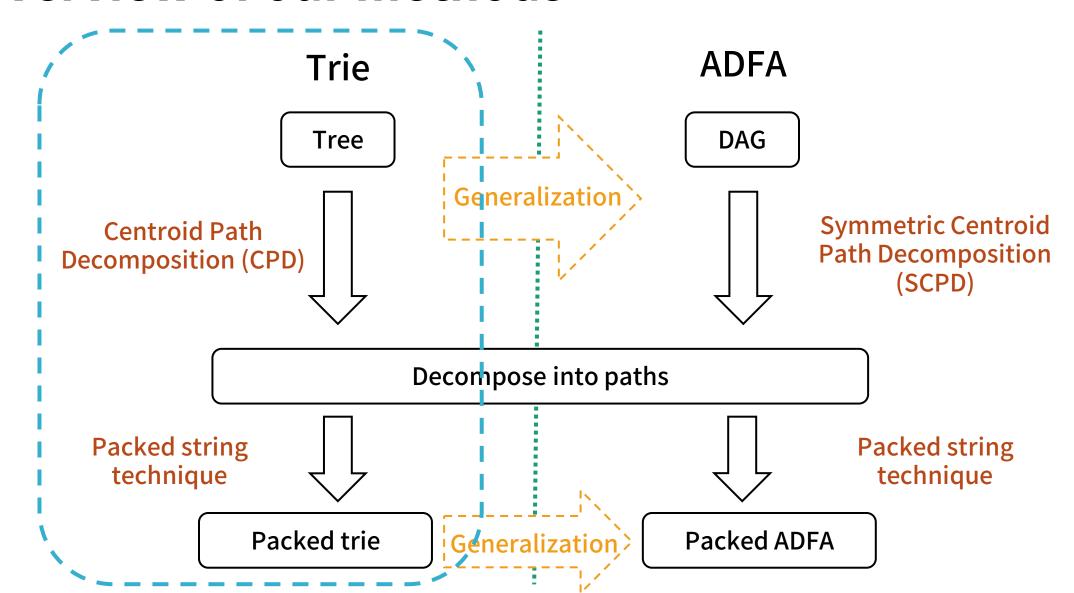
- **performing pattern-searching in** $O\left(\frac{|P|}{\alpha} + \lg k\right)$ time
- more compact than trie-based indexes

Overview of our methods



Packed pattern-searching for tries

Overview of our methods

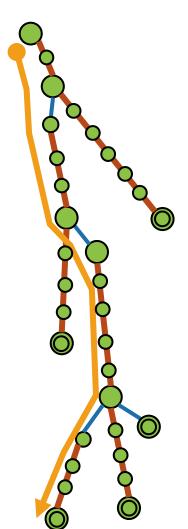


Centroid-path decomposition (CPD) [Ferragina et al., 2008]: Decomposing a tree into paths

Main idea: Split the edge set into heavy edges and light edges to accelerate searching on the heavy path.

Properties of CPD:

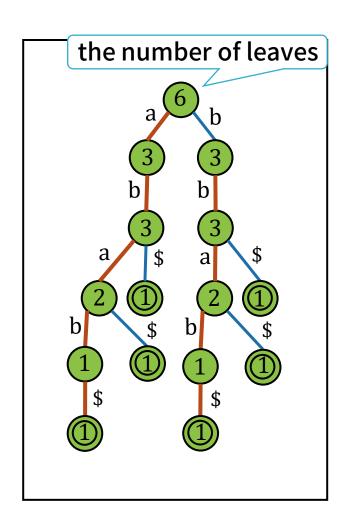
- Heavy edges forms <u>disjoint paths</u>.
- Any path contains <u>a small number of light edges</u>.



Centroid-path decomposition (CPD) [Ferragina et al., 2008]: Decomposing a tree into paths

CPD classifies the edges of a tree into heavy edge and light edge to satisfy the following:

- 1. Each internal node u has exact one heavy edge starting with u.
 - Because of this rule, heavy edges does not have any branching and form disjoint paths.
- 2. The heavy edge starting from u connects to the vertex with the most leaves of u.



Centroid-path decomposition (CPD) [Ferragina et al., 2008]: Decomposing a tree into paths

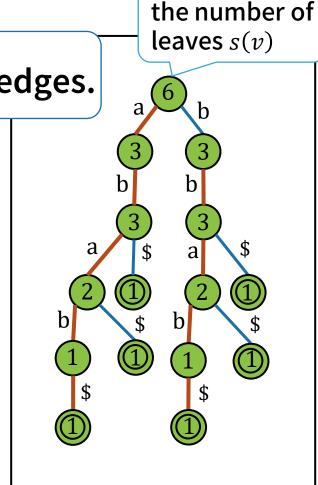
Key Property

Each path in a tree of k leaves contains at most $\lfloor \lg k \rfloor$ light edges.

Let s(v) be the number of leaves of the subtree of v.

We can observe the key property by the following facts.

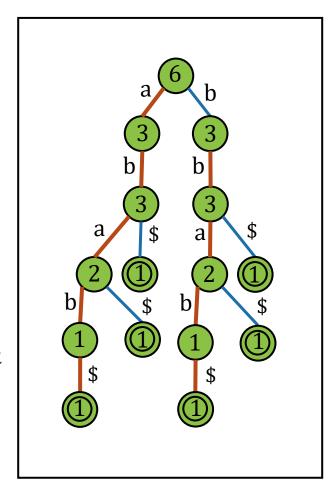
- **1.** For any node v, $0 \le \lfloor \lg s(v) \rfloor \le \lfloor \lg k \rfloor$.
- 2. For any heavy edge (u, v), $\lfloor \lg s(u) \rfloor \ge \lfloor \lg s(v) \rfloor$.
- 3. For any light edge (u, v), $\lfloor \lg s(u) \rfloor > \lfloor \lg s(v) \rfloor$.



Packed Trie: packed pattern-searching index for trie

Packed trie stores the edge labels of the edges as follows:

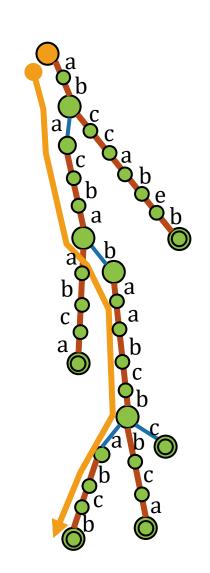
- Heavy paths: by a packed string
 - Enables α times faster comparison between the pattern and the edge labels.
- Light edges: by biased search trees [Bent et al., 1985]
 - Enables finding edge (u, v) labeled by c in $O\left(\frac{\lg s(u)}{\lg s(v)}\right)$ time for given u and c.



Repeat the following procedure:

- 1. Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.

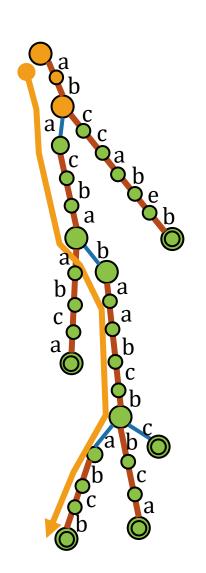
Ex. Pattern: P = abacbabaabcbabcbHeavy Path: H = abccabeb



Repeat the following procedure:

- Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.

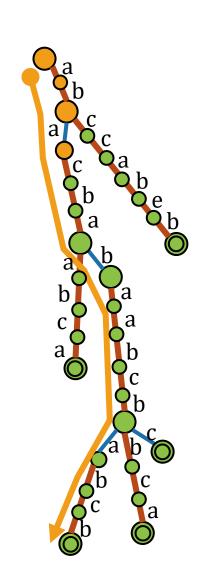
Ex. Pattern: P = abacbabaabcbabcbHeavy Path: H = abccabeb



Repeat the following procedure:

- 1. Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.

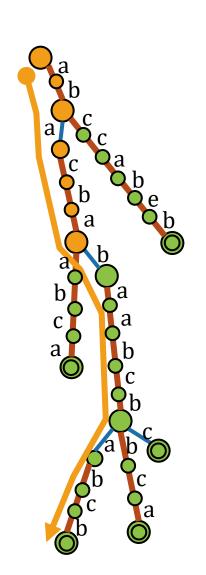
Ex. Pattern: P = abacbabaabcbabcbHeavy Path: H = cbaabca



Repeat the following procedure:

- Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.

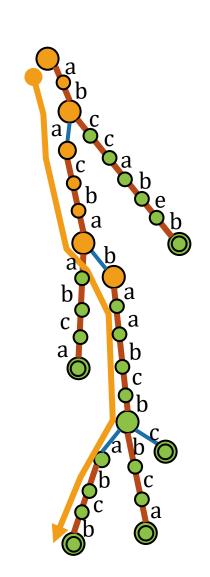
Ex. Pattern: P = abacbabaabcbabcbHeavy Path: H = cbaabca



Repeat the following procedure:

- 1. Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.

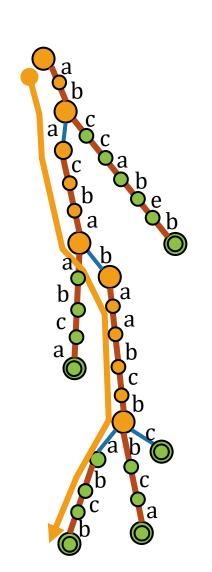
Ex. Pattern: P = abacbabaabcbabcbHeavy Path: H = aabcbbca



Repeat the following procedure:

- Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.

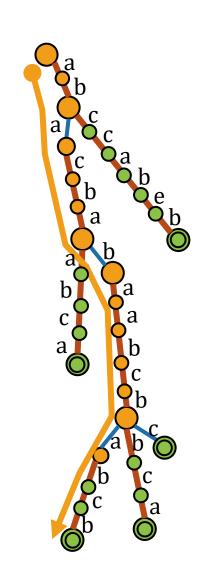
Ex. Pattern: P = abacbabaabcbabcbHeavy Path: H = aabcbbca



Repeat the following procedure:

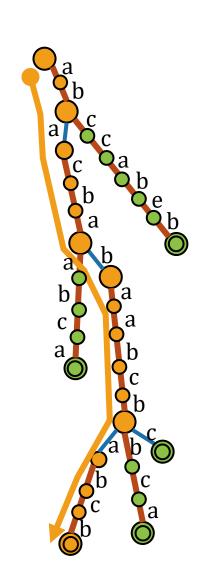
- Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.

Ex. Pattern: P = abacbabaabcbabcbHeavy Path: H = bcb



Repeat the following procedure:

- Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along one light edge.
 - We find the edge by biased search trees.
 - **Ex.** Pattern: *P* = abacbabaabcbabcb

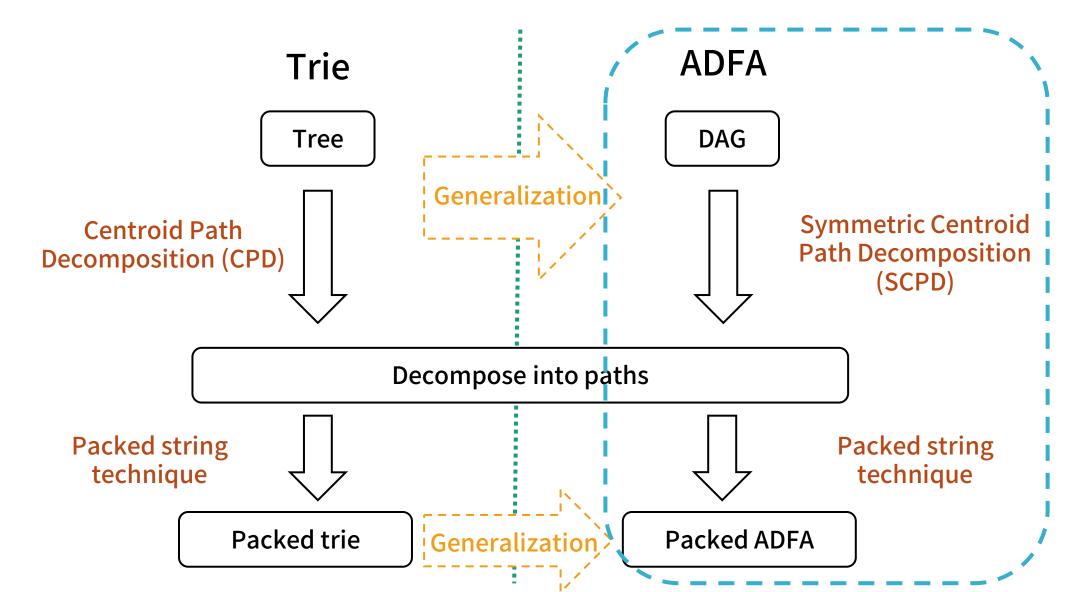


Time complexity for pattern-searching

- Time complexity for heavy edges: $O\left(\frac{|P|}{\alpha} + \lg k\right)$
 - The number of heavy paths is $O(\lg k)$, and searching time for each heavy path is α times faster than normal.
- Time complexity for light edges: $O(\lg k)$
 - Move along an edge (u, v): $O\left(\lg \frac{s(u)}{s(v)}\right)$ time by biased search trees
 - Since the sequence of subtree size on a path is decreasing, the total time complexity is bounded by telescoping sum method. $\left(o\left(\lg\frac{s(u)}{s(v)} + \lg\frac{s(v)}{s(w)}\right) = o\left(\lg\frac{s(u)s(v)}{s(v)s(w)}\right) = o\left(\lg\frac{s(u)}{s(w)}\right)\right)$
- \rightarrow Overall time complexity: $O\left(\frac{|P|}{\alpha} + \lg k\right)$

Packed pattern-searching for ADFA

Overview of our methods



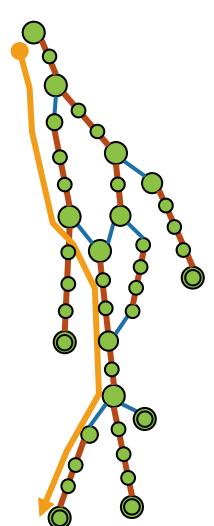
Symmetric centroid path decomposition (SCPD) [Ganardi et al., 2022]: A generalized CPD for DAGs

We cannot directly apply CPD for DAGs.

→ We use generalized method called SCPD.

Properties of SCPD (as with normal CPD)

- Heavy edges forms <u>disjoint paths</u>.
- Any path contains <u>a small number of light edges</u>.



Symmetric centroid path decomposition (SCPD) [Ganardi et al., 2022]: A generalized CPD for DAGs

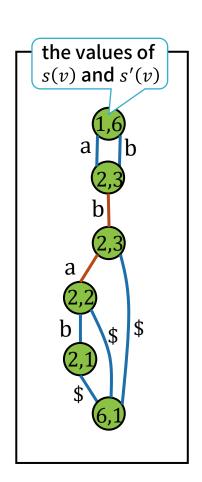
SCPD classifies the edges of a DAG into heavy edges and light edges by the following rules:

Definitions:

- s(v): the number of paths from the root to v
- s'(v): the number of paths from v to the sink

Classification rules:

- 1. Iff an edge (u, v) satisfies both $\lfloor \lg s(u) \rfloor = \lfloor \lg s(v) \rfloor$ and $\lfloor \lg s'(u) \rfloor = \lfloor \lg s'(v) \rfloor$, (u, v) is a heavy edge.
 - ▲ Because of this rule, all heavy edges have different starting/ending point and heavy edges form disjoint paths.
- 2. Otherwise, (u, v) is a light edge.



Symmetric centroid path decomposition (SCPD) [Ganardi et al., 2022]: A generalized CPD for DAGs

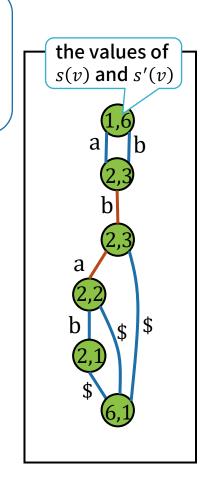
Key Property

Each path in a DAG having k root-sink paths contains at most

 $2 \lfloor \lg k \rfloor$ light edges.

We can observe the key property by the following facts.

- 1. For any node v, $0 \le \lfloor \lg s(v) \rfloor$, $\lfloor \lg s'(v) \rfloor \le \lfloor \lg k \rfloor$.
- 2. For any heavy edge (u, v), $\lfloor \lg s(u) \rfloor = \lfloor \lg s(v) \rfloor$ and $\lfloor \lg s'(u) \rfloor = \lfloor \lg s'(v) \rfloor$ holds.
- 3. For any light edge (u, v), $\lfloor \lg s(u) \rfloor > \lfloor \lg s(v) \rfloor$ or $\lfloor \lg s'(u) \rfloor < \lfloor \lg s'(v) \rfloor$ holds.

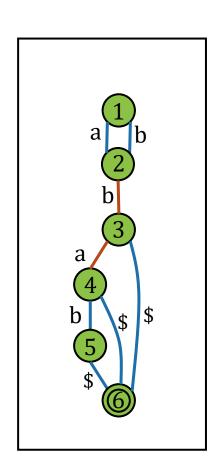


Packed ADFA: packed pattern-searching index for ADFA

Packed ADFA stores edge labels of each heavy path by a packed string, and store light edges by biased search trees.

Implementation techniques for reducing memory usage:

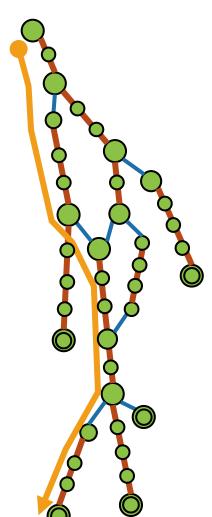
- Concatenating all heavy edge labels as a one string.
- Reducing the number of biased search trees.
 - We omit biased search trees for a node having no light edges starting from it.



The algorithm for pattern-searching with packed ADFA (as with packed trie)

Repeat the following procedure:

- Compare the pattern string and its heavy path string and jump to the first mismatched point.
 - We find mismatched point by comparison of packed strings.
- 2. Jump along with one light edge.
 - We find the edge by biased search trees.
 - \rightarrow Overall Time Complexity: $O\left(\frac{|P|}{\alpha} + \lg k\right)$



Experiments

Experimental Settings

- Evaluation measures:
 - Memory: the amount of memory consumption for created indexes.
 - Time: total elapsed time for pattern-searching for all $S_i \in S$.
- Datasets: three types of dataset (URL, city, prot)
- Data structures:
 - Normal: standard trie / ADFA

It handles unary paths to leaves by packed strings.

- Pref: minimal prefix trie [Aoe, 1989]
- Packed: packed trie / ADFA
- Bit width: w = 64 and $\lg \sigma = 8$ bits.

Characteristics of datasets and the size of their tries / ADFAs

The characteristics for each data set and the size of tries/ADFAs.

	dictionary			Tı	ie	ADFA		
	σ	k	total len.	ave. len.	$\overline{ V }$	E	$\overline{ V }$	$\overline{ E }$
url	93	862,665	72,540,387	84.089	10,146,553	10,146,552	1,612,336	2,040,555
city	78	177,030	1,970,082	11.183	846,550	846,549	198,195	333,800
protein	25	157,237	46,687,247	295.046	35,028,185	35,028,184	32,905,500	33,030,196

- All datasets have about 10⁵~10⁶ strings and average length is about 10~300.
- ADFAs can reduce the graph size about 2.5~5 times compared to tries for url and city dataset.

Memory usage of tries / ADFAs

The memory usage of tries/ADFAs.

		Memory [MiB]						
		Tries	ADFAs					
	Normal	Pref	Packed	Normal	Packed			
url	59.269	20.751	13.625	11.676	4.773			
city	4.945	2.045	1.618	1.910	1.270			
protein	204.609	38.729	34.130	189.000	32.757			

- Packed ADFA is about 4~13 times memory efficient than normal tries.
- We observe both packed data structure and converting tries to minimal DFAs are effective.

Computation time for pattern-searching

The computation time for pattern searching of tries/ADFAs.

		Time [ms]					
		Tries	ADFAs				
	Normal	Pref	Packed	Normal	Packed		
url	5911.507	5056.601	1046.047	5691.689	1219.044		
city	221.616	179.772	133.276	233.288	161.726		
protein	2614.497	363.963	175.183	2780.915	313.974		

- For all datasets, packed trie is the fastest, followed by packed ADFAs.
- Packed indexes performs pattern-searching 1.3~5 times faster than using standard tries even if pattern is not sufficiently long.

Conclusion

- We proposed packed ADFA, a time and space-efficient index for patternsearching.
 - It can achieve optimal searching time for sufficiently long pattern.
 - It is more space-efficient than trie-based indexes.
- Experimental result shows that it is practically efficient.
 - It performs faster pattern-searching even if the pattern is not sufficiently long.
 - Both packing techniques and minimizing tries to ADFA contributes to reducing memory consumption.