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Overview

B Pattern-searching: the problem of deciding whether the input patternisina
dictionary (a set of strings)

® Pattern-searchingindex: an index structure supporting efficient pattern-searching queries.
B ADFA:a compact pattern-searching index

B Packed string: storing multiple characters in one machine word

Our method: Packed ADFA

® Performing pattern-searchingin 0 (ﬂ + g k) time

a

® More compactthan trie-based indexes



Pattern-searching

dictionary s |

apple
pineapple

m Dictionary: a set of strings § = {5, ..., Si} banana

orange

B Pattern-searching: the problem of deciding
whether P € § (P : pattern string) VA

Query: applee s ? Answer: Yes




Pattern-searching index

[ pattern-searching index ]

[ ADFA |
Pattern-searching index: an index structure
storing a dictionary § and can answer pattern-
searching queries efficiently for s.
m Itis effective if there are many queries with the e
same dictionary and different patterns.
Ql: applee §? Al:Yes
Famous pattern-searching indexes: Q2: grape €S ? A2: no
Q3: orange € S ? A3: Yes
® Trie: atree-formed index

® ADFA: a DAG-formed index



Trie: a tree-formed pattern-searching index

B Each path from the root to an accepting state

represents a string
B Supports efficient pattern searching query

B Easy to handle and allows for the use of various

techniques due to its tree structure

® e.g. centroid path decomposition, Euler tour

a trie of
{abab$, aba$, ab$, bbab$, bba$, bb$}



ADFA: a DAG-formed pattern-searching index

B Each path from root to an accepting state represents a

string
B Supports efficient pattern searching query

B |s a generalization of trie

® Advantage of generalization: it can be more compact than a trie

® Disadvantage: efficient tree algorithms are not directly applicable

due to its DAG structure

a ADFA of
{abab$, aba$, ab$, bbab$, bba$, bb$}



A relationship between trie and minimal ADFA

Minimal ADFA

' The largest ADFA of 5}

Merge
allisomorphic
subtrees

§ = {abab$, aba$, ab$, bbab$, bba$, bb$}



Pattern-searching query of a ADFA

B Pattern searching algorithm:
1. Letv «rootandi « 1.

2. Whilei < |P|, repeat the following procedure:
1. Find the edge starting from v labeled by P[i].
« Ifthereis nosuch edge, return “No”.

2. Move v alongthe edge and seti « i + 1.

3. Return “Yes” iff v is an acceptable state.

EX. Pattern: P = a
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Pattern-searching query of a ADFA

B Pattern searching algorithm:
1. Letv «rootandi « 1.

2. Whilei < |P|, repeat the following procedure:
1. Find the edge starting from v labeled by P[i].
« Ifthereis nosuch edge, return “No”.

2. Move v alongthe edge and seti « i + 1.

3. Return “Yes” iff v is an acceptable state.

EX. Pattern: P = abach
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Pattern-searching query of a ADFA

B Pattern searching algorithm:
1. Letv «rootandi « 1.

2. Whilei < |P|, repeat the following procedure:
1. Find the edge starting from v labeled by P[i].
« Ifthereis nosuch edge, return “No”.

2. Move v alongthe edge and seti « i + 1.

3. Return “Yes” iff v is an acceptable state.

EX. Pattern: P = abacba
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Pattern-searching query of a ADFA

B Pattern searching algorithm:
1. Letv «rootandi « 1.

2. Whilei < |P|, repeat the following procedure:
1. Find the edge starting from v labeled by P[i].
« Ifthereis nosuch edge, return “No”.

2. Move v alongthe edge and seti « i + 1.

3. Return “Yes” iff v is an acceptable state.

EX. Pattern: P = abacbabaabcbabcb
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Pattern-searching query of a ADFA

B Pattern searching algorithm:
1. Letv «rootandi « 1.

2. Whilei < |P|, repeat the following procedure:
1. Find the edge starting from v labeled by P[i].
« Ifthereis nosuch edge, return “No”.

2. Move v alongthe edge and seti « i + 1.

3. Return “Yes” iff v is an acceptable state.

— Overall time complexity: Q(|P|)
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Packed string: storing multiple characters into a single
machine word

B Modern computers have 64~512-bit registers.

lgo = 8 bits
B The bit-width for one character is typically less {_A_\
than the bit-width of registers. alblc|d|e|f|g]|h
® e.g. 8bits for ASCII, 2bits for nucleotides. \ \

w = 64 bits, « = 8 characters
in one machine word

w

We can pack a = =0 characters into a single

machine word (packed string).



Efficient comparison using packed strings

Packed string allows comparing consecutive « characters at once.

We can find the first mismatched index p of two packed strings in O (E) time.

a characters, w bits

[ ]

packedstringx|a|bfc|d|e|f|g|h|la|b|c|d|fe|f|g|h|la|b|lc|d|e|f]|g

packedstringy [@a|blcldle|[f|g|h|a|lb|(c|d|e|f|g|h|a|b|c|ale|f]|g




Efficient comparison using packed strings

Packed string allows comparing consecutive « characters at once.

We can find the first mismatched index p of two packed strings in O (E) time.

a characters, w bits

packedstringx|a|b|c|d|e|f|g|h|a|blc|d|e|f|g[h|a|lb|c|d|e|f]|g

packedstringy|a |b|c|d|e|f|g|hfalblcldleff|g|h|la|lbfc|aje|f]|g




Efficient comparison using packed strings

Packed string allows comparing consecutive « characters at once.

We can find the first mismatched index p of two packed strings in O (E) time.

a characters, w bits

packedstringx|a|b|c|d|e|f|g|h|la|b|lc|d|e|f|g|hla|lblc|ld|le|f]|8

packedstringy|a |b|c|d|e|f|g|h|a|b|lc|d|e|f|g|hlalblelale|f]|s




Combining pattern-searching indexes and packed string

B Trie: several methods for applying packed string have been proposed

® applying centroid path decomposition for speeding up in cache-oblivious model
[Ferragina et al., 2008]

® decomposition into micro trees of 0(w) size [Takagi et al., 2017]

B ADFA: there is no method for combining packed strings and ADFAs

® Because all packed string methods for tries rely on its tree structure.




Our work: Packed ADFA

We propose packed ADFA: ADFA-based pattern-searching index with
packed string.

Main adva ntages of Packed ADFA: It is optimal when P is sufficiently long.

B performing pattern-searchingin 0 (% + Ig k) time

B more compact than trie-based indexes
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Overview of our methods

Trie ADFA
[ Tree ] [ DAG ]
Centroid Path _ Symmetric Centroid
Decomposition (CPD) Path Decomposition
5 (SCPD)
N \
[ Decompose into paths ]
Packed string Packed string

technique N N technique

[ Packed trie ] [ Packed ADFA ]



Packed pattern-searching for tries



Overview of our methods

Centroid Path
Decomposition (CPD)

o ADFA

(onc )
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Centroid-path decomposition (CPD) [Ferragina et al., 2008]:
Decomposing a tree into paths

Main idea: Split the edge set into heavy edges and

light edges to accelerate searching on the heavy path.

Properties of CPD:

B Heavy edges forms disjoint paths.

B Any path contains a small number of light edges.



Centroid-path decomposition (CPD) [Ferragina et al., 2008]:

Decomposing a tree into paths

CPD classifies the edges of a tree into heavy edge and
light edge to satisfy the following:

1. Eachinternal node u has exact one heavy edge
starting with u.

® Because of this rule, heavy edges does not have any
branching and form disjoint paths.

2. The heavy edge starting from u connects to the vertex
with the most leaves of w.

the number of leaves




Centroid-path decomposition (CPD) [Ferragina et al., 2008]:
Decomposing a tree into paths

the number of
leaves s(v)

Key Property |
Each path in a tree of k leaves contains at most |lg k| light edgesJ

Let s(v) be the number of leaves of the subtree of v.

We can observe the key property by the following facts.
1. Foranynode v,0 < |lgs(v)| < |lgk].

2. For any heavy edge (u,v), |lgs(uw)] = |lgs(v)].

3. Forany lightedge (u,v), llgs(u)| > [lgs(v)].




Packed Trie: packed pattern-searching index for trie

Packed trie stores the edge labels of the edges as follows:

B Heavy paths: by a packed string

® Enables a times faster comparison between the pattern and the
edge labels.

B Light edges: by biased search trees [Bent et al., 1985]

® Enables finding edge (u,v) labeled by cin 0 (iigg) time for given u

and c.




The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string
and jump to the first mismatched point.

® We find mismatched point by comparison of packed strings.

2. Jump along one light edge.
® We find the edge by biased search trees.

EX. Pattern: P = aba
Heavy Path: H = ab
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The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string
and jump to the first mismatched point.

® We find mismatched point by comparison of packed strings.

2. Jump along one light edge.
® We find the edge by biased search trees.

EX. Pattern: P = abacbabaabcba
Heavy Path: H = aabcb
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The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string
and jump to the first mismatched point.

® We find mismatched point by comparison of packed strings.
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The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string
and jump to the first mismatched point.

® We find mismatched point by comparison of packed strings.

2. Jump along one light edge.
® We find the edge by biased search trees.

EX. Pattern: P = abacbabaabcbabcb
Heavy Path: H = bcb
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The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string
and jump to the first mismatched point.

® We find mismatched point by comparison of packed strings.

2. Jump along one light edge.
® We find the edge by biased search trees.

EX. Pattern: P = abacbabaabcbabcb




Time complexity for pattern-searching

B Time complexity for heavy edges: 0 (ﬂ + 1g k)

a

® The number of heavy pathsis 0(Igk), and searching time for each heavy path is « times faster
than normal.

® Time complexity for light edges: 0(lgk)

® Move along anedge (u,v): 0 (lg%) time by biased search trees

® Since the sequence of subtree size on a path is decreasing, the total time complexity is

. s(u) s()) _ swsw) _ s(uw)
bounded by telescoping sum method. <0 (1gE + lgs(w)) =0 (lgs(v)s(w)) =0 (lgs(w))>

— Overall time complexity: O (% + Ig k)



Packed pattern-searching for ADFA



Overview of our methods
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Symmetric centroid path decomposition (SCPD) [Ganardi
et al., 2022]: A generalized CPD for DAGs

We cannot directly apply CPD for DAGs.

— We use generalized method called SCPD.

Properties of SCPD (as with normal CPD)

B Heavy edges forms disjoint paths.

B Any path contains a small number of light edges.




Symmetric centroid path decomposition (SCPD) [Ganardi
et al., 2022]: A generalized CPD for DAGs

SCPD classifies the edges of a DAG into heavy edges and light edges by — the valtcjles,of —
the following rules: s(v) and s'(v)
B Definitions:

® 5(v):the number of paths from theroot to v

® s'(v):the number of paths from v to the sink

B Classification rules:

1. Iffan edge (u,v) satisfies both |Igs(w)] = |lgs(v)| and |lgs'(w)]| =
llgs’(v)], (u,v) is a heavy edge.

A Because of this rule, all heavy edges have different starting/ending
point and heavy edges form disjoint paths.

2. Otherwise, (u,v) isa light edge.



Symmetric centroid path decomposition (SCPD) [Ganardi
et al., 2022]: A generalized CPD for DAGs
{Key Property} ~

Each path in a DAG having k root-sink paths contains at most
\2 llg k] light edges.

— the values of —
s(v) and s'(v)

We can observe the key property by the following facts.
1. Foranynode v,0 <|lgs(v)], |lgs'(v)] < |lgk].

2. For any heavyedge (u,v), [lgs(w)] = |lgs(v)] and [Igs'(uw)]| =
llgs’(v)] holds.

3. Foranylightedge (u,v),|lgs(u)] > |lgs(v)] or [lgs'(uw)] <
llgs’(v)] holds.




Packed ADFA: packed pattern-searching index for ADFA

Packed ADFA stores edge labels of each heavy path by a

packed string, and store light edges by biased search trees.

Implementation techniques for reducing memory usage:

B Concatenating all heavy edge labels as a one string.

B Reducing the number of biased search trees.

® We omitbiased search trees for a node having no light edges starting

from it.



The algorithm for pattern-searching with packed ADFA
(as with packed trie)

Repeat the following procedure:

1. Compare the pattern string and its heavy path string
and jump to the first mismatched point.

® We find mismatched point by comparison of packed strings.

2. Jump along with one light edge.
® We find the edge by biased search trees.

— Overall Time Complexity: 0 (ﬂ + g k)

a



Experiments



Experimental Settings

B Evaluation measures:

® Memory: the amount of memory consumption for created indexes.

® Time: total elapsed time for pattern-searching for all s; € S.

B Datasets: three types of dataset (URL, city, prot)

B Data structures:

® Normal: standard trie / ADFA It handles unary paths to leaves by packed strings.
® Pref: minimal prefix trie [Aoe, 1989]

® Packed: packed trie / ADFA

B Bit width: w = 64 and Igo = 8 bits.



Characteristics of datasets and the size of their tries /| ADFAs

The characteristics for each data set and the size of tries/ADFAs.

dictionary Trie ADFA

o k  total len. ave. len. 4 | E| 4 | E|

url 93 862,665 72,540,387 84.089 10,146,553 10,146,552 1,612,336 2,040,555
city 78 177,030 1,970,082 11.183 846,550 846,549 198,195 333,800
protein 25 157,237 46,687,247 295.046 35,028,185 35,028,184 32,905,500 33,030,196

m All datasets have about 10°~10°strings and average length is about 10~300.

B ADFAs canreduce the graph size about 2.5~5 times compared to tries for url
and city dataset.



Memory usage of tries /| ADFAs

The memory usage of tries/ADFAs.

Memory [MiB]

Tries ADFAs
Normal Pref Packed Normal Packed
url 59.269 20.751 13.625 11.676 4.773
city 4945 2.045 1.618 1910 1.270

protein 204.609 38.729 34.130 189.000 32.757

B Packed ADFA is about 4~13 times memory efficient than normal tries.

B We observe both packed data structure and converting tries to minimal

DFAs are effective.



Computation time for pattern-searching

The computation time for pattern searching of tries/ADFAs.

Time [ms]
Tries ADFAs
Normal Pref Packed Normal Packed

url 5911.507 5056.601 1046.047 5691.689 1219.044
city 221.616 179.772 133.276 233.288 161.726
protein 2614.497 363.963 175.183 2780.915 313.974

B For all datasets, packed trie is the fastest, followed by packed ADFAs.

B Packed indexes performs pattern-searching 1.3~5 times faster than using

standard tries even if pattern is not sufficiently long.



Conclusion

B We proposed packed ADFA, a time and space-efficient index for pattern-
searching.
® [t can achieve optimal searching time for sufficiently long pattern.

® Itis more space-efficient than trie-based indexes.

B Experimental result shows that it is practically efficient.
® |t performs faster pattern-searching even if the pattern is not sufficiently long.

® Both packing techniques and minimizing tries to ADFA contributes to

reducing memory consumption.
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