
Packed Acyclic Deterministic Finite Automata

Hiroki Shibata1, Masakazu Ishihata2, Shunsuke Inenaga1

1. Kyushu University

2. NTT Communication Science Laboratories

SOFSEM2025



2

Overview

◼ Pattern-searching: the problem of deciding whether the input pattern is in a 

dictionary (a set of strings)

⚫ Pattern-searching index: an index structure supporting efficient pattern-searching queries.

◼ ADFA: a compact pattern-searching index

◼ Packed string: storing multiple characters in one machine word

Our method: Packed ADFA

⚫ Performing pattern-searching in 𝑂
|𝑃|

𝛼
+ lg 𝑘  time

⚫ More compact than trie-based indexes



3

Pattern-searching

◼ Dictionary: a set of strings 𝒮 = 𝑆1, … , 𝑆𝑘

◼ Pattern-searching: the problem of deciding 

whether 𝑃 ∈ 𝒮  (𝑃 : pattern string)

apple

banana

pineapple

orange

dictionary 𝒮

Query:  apple ∈ 𝒮？ Answer: Yes

User



4

Pattern-searching index

Pattern-searching index: an index structure 

storing a dictionary 𝒮 and can answer pattern-

searching queries efficiently for 𝒮.

◼ It is effective if there are many queries with the 

same dictionary and different patterns.

Famous pattern-searching indexes:

⚫ Trie: a tree-formed index

⚫ ADFA: a DAG-formed index

Q1:  apple ∈ 𝒮？
Q2:  grape ∈ 𝒮？
Q3:  orange ∈ 𝒮？

pattern-searching index

A1: Yes
A2: no
A3: Yes

User

Trie ADFA



5

Trie: a tree-formed pattern-searching index

◼ Each path from the root to an accepting state 

represents a string

◼ Supports efficient pattern searching query

◼ Easy to handle and allows for the use of various 

techniques due to its tree structure

⚫ e.g. centroid path decomposition, Euler tour

a

b b

a a$ $

b b$ $

$ $

b

a trie of 
{abab$, aba$, ab$, bbab$, bba$, bb$}



6

ADFA: a DAG-formed pattern-searching index

◼ Each path from root to an accepting state represents a 

string

◼ Supports efficient pattern searching query

◼ Is a generalization of trie

⚫ Advantage of generalization: it can be more compact than a trie

⚫ Disadvantage: efficient tree algorithms are not directly applicable 

due to its DAG structure

a ADFA of 
{abab$, aba$, ab$, bbab$, bba$, bb$}

a

b

a

$

b

$

b $



7

Trie Minimal ADFA

Merge
all isomorphic 

subtrees

𝒮 = {abab$, aba$, ab$, bbab$, bba$, bb$}

The largest ADFA of 𝒮

A relationship between trie and minimal ADFA

a

b

a

$

b

$

b $

a

b b

a a$ $

b b$ $

$ $

b



8

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

a

b

a
b

a
b

c
b

c
b

b

c

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

a c

a

b

b
a

b
c

a

a
b



9

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

a

b

a
b

a
b

c
b

c
b

b

c

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

a c

a

b

b
a

b
c

a

a
b



10

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

a

b

a
b

a
b

c
b

c
b

b

c

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

a c

a

b

b
a

b
c

a

a
b



11

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

b

a
b

a
b

c
b

c
b

b

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

a c

a

b

b
a

b
c

a

a
b

a

c



12

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

a
b

a
b

c
b

c
b

b

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

a c

a

b

b
a

b
c

a

a
b

a

b
c



13

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

b

a
b

c
b

c
b

b

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

a c

a

b

b
a

b
c

a

a
b

a

c

a

b



14

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

b

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

c
b

b

c

a

a
b

a

c
b

a
b

c
b

c
b

a

a

a

b

a

b



15

Pattern-searching query of a ADFA

◼ Pattern searching algorithm:

1. Let 𝑣 ← root and 𝑖 ← 1.

2. While 𝑖 ≤ 𝑃 , repeat the following procedure:

1. Find the edge starting from 𝑣 labeled by 𝑃[𝑖].

• If there is no such edge, return “No”.

2. Move 𝑣 along the edge and set 𝑖 ← 𝑖 + 1.

3. Return “Yes” iff 𝑣 is an acceptable state.

b

b
b

c
ba

a a
c

b
c

a ca

b

b
c

b
c

c
b

b

c

a

a
b

a

c
b

a
b

c
b

c
b

a

a

a

b

a

b→ Overall time complexity: Ω 𝑃



16

Packed string: storing multiple characters into a single 
machine word

◼ Modern computers have 64~512-bit registers. 

◼ The bit-width for one character is typically less 

than the bit-width of registers.

⚫ e.g. 8bits for ASCII, 2bits for nucleotides.

We can pack 𝛼 =
𝑤

lg 𝜎
 characters into a single 

machine word (packed string).

a b c d e f g h

lg 𝜎 = 8 bits

𝑤 = 64 bits, 𝛼 = 8 characters
in one machine word



17

Efficient comparison using packed strings

Packed string allows comparing consecutive 𝛼 characters at once.

We can find the first mismatched index 𝑝 of two packed strings in 𝑂
𝑝

𝛼
 time.

a b c d e f g h a b c a e f g h

a b c d e f g h a b c d e f g h

𝛼 characters,  𝑤 bits

packed string 𝑋

packed string 𝑌 a b c d e f g h

a b c d e f g h



18

Efficient comparison using packed strings

Packed string allows comparing consecutive 𝛼 characters at once.

We can find the first mismatched index 𝑝 of two packed strings in 𝑂
𝑝

𝛼
 time.

a b c d e f g h a b c a e f g h

a b c d e f g h a b c d e f g h

𝛼 characters,  𝑤 bits

packed string 𝑋

packed string 𝑌 a b c d e f g h

a b c d e f g h



19

Efficient comparison using packed strings

Packed string allows comparing consecutive 𝛼 characters at once.

We can find the first mismatched index 𝑝 of two packed strings in 𝑂
𝑝

𝛼
 time.

a b c d e f g h

a b c d e f g h

𝛼 characters,  𝑤 bits

packed string 𝑋

packed string 𝑌 a b c d e f g h

a b c d e f g h

a b c a e f g h

a b c d e f g h



20

Combining pattern-searching indexes and packed string

◼ Trie: several methods for applying packed string have been proposed

⚫ applying centroid path decomposition for speeding up in cache-oblivious model 

[Ferragina et al., 2008]

⚫ decomposition into micro trees of 𝑂 𝑤  size [Takagi et al., 2017]

◼ ADFA: there is no method for combining packed strings and ADFAs

⚫ Because all packed string methods for tries rely on its tree structure.



21

Our work: Packed ADFA

We propose packed ADFA: ADFA-based pattern-searching index with 

packed string.

Main advantages of Packed ADFA:

◼ performing pattern-searching in 𝑂
|𝑃|

𝛼
+ lg 𝑘  time

◼ more compact than trie-based indexes

It is optimal when 𝑃 is sufficiently long.



22

Overview of our methods

Tree

Decompose into paths

Centroid Path 
Decomposition (CPD)

Trie

Packed string 
technique

Packed trie

DAG

Symmetric Centroid 
Path Decomposition 

(SCPD)

Generalization

ADFA

Packed ADFAGeneralization

Packed string 
technique



23

Packed pattern-searching for tries



24

Overview of our methods

Tree

Decompose into paths

Centroid Path 
Decomposition (CPD)

Trie

Packed string 
technique

Packed trie

DAG

Symmetric Centroid 
Path Decomposition 

(SCPD)

Generalization

ADFA

Packed ADFAGeneralization

Packed string 
technique



25

Main idea: Split the edge set into heavy edges and 

light edges to accelerate searching on the heavy path.

Properties of CPD:

◼ Heavy edges forms disjoint paths.

◼ Any path contains a small number of light edges.

Centroid-path decomposition (CPD) [Ferragina et al., 2008]: 
Decomposing a tree into paths



26

CPD classifies the edges of a tree into heavy edge and 

light edge to satisfy the following:

1. Each internal node 𝑢 has exact one heavy edge 

starting with 𝑢.

⚫ Because of this rule, heavy edges does not have any 

branching and form disjoint paths.

2. The heavy edge starting from 𝑢 connects to the vertex 

with the most leaves of 𝑢.

6

33

3 3

2 112

1

1 1

11

the number of leaves

Centroid-path decomposition (CPD) [Ferragina et al., 2008]: 
Decomposing a tree into paths

1

$

$ $

b

$

a

b b

a a

b

$ $

b



27

Centroid-path decomposition (CPD) [Ferragina et al., 2008]: 
Decomposing a tree into paths

Let  𝑠 𝑣  be the number of leaves of the subtree of 𝑣.

We can observe the key property by the following facts.

1. For any node  𝑣 , 0 ≤ ⌊lg 𝑠 𝑣 ⌋ ≤ ⌊lg 𝑘⌋.

2. For any heavy edge 𝑢, 𝑣 , lg 𝑠 𝑢 ≥ ⌊lg 𝑠 𝑣 ⌋.

3. For any light edge  (𝑢, 𝑣), lg 𝑠 𝑢 > ⌊lg 𝑠 𝑣 ⌋.

6

33

3 3

2 112

1

1 1

11

Key Property

Each path in a tree of 𝑘 leaves contains at most ⌊lg 𝑘⌋ light edges.

the number of 
leaves 𝑠 𝑣

1

$

$ $

b

$

a

b b

a a

b

$ $

b



28

Packed Trie: packed pattern-searching index for trie

Packed trie stores the edge labels of the edges as follows:

◼ Heavy paths: by a packed string

⚫ Enables 𝛼 times faster comparison between the pattern and the 

edge labels.

◼ Light edges:  by biased search trees [Bent et al., 1985]

⚫ Enables finding edge 𝑢, 𝑣  labeled by 𝑐 in 𝑂
lg 𝑠 𝑢

lg 𝑠 𝑣
 time for given 𝑢 

and 𝑐.

6

33

3 3

2 112

1

1 1

111

$

$ $

b

$

a

b b

a a

b

$ $

b



29

The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

c

a

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

Heavy Path: 𝐻 = abccabeb

a
b

c

b

b
e

c

a

a

b

a

b

c
b

c

a

c
b

a
ab

c

b

b

a

b
c

a



30

The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

Heavy Path: 𝐻 = abccabeb

c

a
c

b

b
e

c

a

a

b

a

b

c
b

c

a

c
b

a
ab

c

b

b

a

b
c

a

a
b



31

The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

Heavy Path: 𝐻 = abacbaabca

c

a
c

b

b
e

a

a

b

a

b

c
b

c

a

c
b

a
ab

c

b

b

b
c

a

a
b

c

a



32

The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

Heavy Path: 𝐻 = abacbaabca

c

a
c

b

b
e

a

a

b

c
b

c

a

c
b

a
ab

c

b

b
c

a

a
b

a

a

b

b

c



33

The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

Heavy Path: 𝐻 = abacbabaabcbbca

c

a
c

b

b
e

a

a

b

c
b

c

a

c
b

a

b
c

b

b
c

a

a
b

a

a
b

c

a

b



34

The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

Heavy Path: 𝐻 = abacbabaabcbbca

c

a
c

b

b
e

a

c
b

c

a

a

b
c

b

ba

a
b

a

a
b

c

b

a

b
c
b

c

a



35

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

Heavy Path: 𝐻 = abacbabaabcbbbcb

The algorithm for pattern-searching with packed trie

c

a
c

b

b
e

a

c
b

c

a

a

b
c

b

a
b

a

a
b

c

b

a

b
c
b

c

a

b

a



36

The algorithm for pattern-searching with packed trie

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along one light edge.

⚫ We find the edge by biased search trees.

Ex.           Pattern: 𝑃 = abacbabaabcbabcb

c

a
c

b

b
e

a

c

a

a

b
c

b

a
b

a

a
b

c

b

a

b
c
b

c

a

a

c
b

b



37

Time complexity for pattern-searching

◼ Time complexity for heavy edges: 𝑂
𝑃

𝛼
+ lg 𝑘

⚫ The number of heavy paths is 𝑂 lg 𝑘 , and searching time for each heavy path is 𝛼 times faster 

than normal.

◼ Time complexity for light edges: 𝑂 lg 𝑘

⚫ Move along an edge 𝑢, 𝑣  :  𝑂 lg
𝑠 𝑢

𝑠 𝑣
 time by biased search trees

⚫ Since the sequence of subtree size on a path is decreasing, the total time complexity is 

bounded by telescoping sum method. 𝑂 lg
𝑠 𝑢

𝑠 𝑣
+ lg

𝑠 𝑣

𝑠 𝑤
= 𝑂 lg

𝑠 𝑢 𝑠 𝑣

𝑠 𝑣 𝑠 𝑤
= 𝑂 lg

𝑠 𝑢

𝑠 𝑤

→ Overall time complexity: 𝑂
𝑃

𝛼
+ lg 𝑘



38

Packed pattern-searching for ADFA



39

Overview of our methods

Tree

Decompose into paths

Centroid Path 
Decomposition (CPD)

Trie

Packed string 
technique

Packed trie

DAG

Symmetric Centroid 
Path Decomposition 

(SCPD)

Generalization

ADFA

Packed ADFAGeneralization

Packed string 
technique



40

Symmetric centroid path decomposition (SCPD) [Ganardi 
et al., 2022]: A generalized CPD for DAGs

We cannot directly apply CPD for DAGs.

→ We use generalized method called SCPD.

Properties of SCPD (as with normal CPD)

◼ Heavy edges forms disjoint paths.

◼ Any path contains a small number of light edges.



41

Symmetric centroid path decomposition (SCPD) [Ganardi 
et al., 2022]: A generalized CPD for DAGs

SCPD classifies the edges of a DAG into heavy edges and light edges by 

the following rules:

◼ Definitions:

⚫ 𝑠 𝑣  : the number of paths from the root to 𝑣

⚫ 𝑠′ 𝑣  : the number of paths from 𝑣 to the sink

◼ Classification rules:

1. Iff an edge 𝑢, 𝑣  satisfies both lg 𝑠 𝑢 = lg 𝑠 𝑣  and lg 𝑠′ 𝑢 =

lg 𝑠′ 𝑣 , 𝑢, 𝑣  is a heavy edge.

▲ Because of this rule, all heavy edges have different starting/ending 

point and heavy edges form disjoint paths.

2. Otherwise, 𝑢, 𝑣  is a light edge.

1,6

2,3

2,3

2,2

2,1

6,1

the values of 
𝑠 𝑣 and 𝑠′ 𝑣

a

b

a

$

b

$

b $



42

Symmetric centroid path decomposition (SCPD) [Ganardi 
et al., 2022]: A generalized CPD for DAGs

We can observe the key property by the following facts.

1. For any node  𝑣 , 0 ≤ lg 𝑠 𝑣 , lg 𝑠′ 𝑣 ≤ lg 𝑘 .

2. For any heavy edge  𝑢, 𝑣 , lg 𝑠 𝑢 = lg 𝑠 𝑣  and lg 𝑠′ 𝑢 =

lg 𝑠′ 𝑣  holds.

3. For any light edge  (𝑢, 𝑣), lg 𝑠 𝑢 > lg 𝑠 𝑣  or lg 𝑠′ 𝑢 <

lg 𝑠′ 𝑣  holds.

Each path in a DAG having 𝑘 root-sink paths contains at most 

2 ⌊lg 𝑘⌋ light edges.

Key Property

1,6

2,3

2,3

2,2

2,1

6,1

a

b

a

$

b

$

b $

the values of 
𝑠 𝑣 and 𝑠′ 𝑣



43

Packed ADFA: packed pattern-searching index for ADFA

Packed ADFA stores edge labels of each heavy path by a 

packed string, and store light edges by biased search trees.

Implementation techniques for reducing memory usage:

◼ Concatenating all heavy edge labels as a one string.

◼ Reducing the number of biased search trees.

⚫ We omit biased search trees for a node having no light edges starting 

from it.

1

2

3

4

5

6

a

b

a

$

b

$

b $



44

The algorithm for pattern-searching with packed ADFA
(as with packed trie)

Repeat the following procedure:

1. Compare the pattern string and its heavy path string 

and jump to the first mismatched point.

⚫ We find mismatched point by comparison of packed strings.

2. Jump along with one light edge.

⚫ We find the edge by biased search trees.

→ Overall Time Complexity: 𝑂
𝑃

𝛼
+ lg 𝑘



45

Experiments



46

Experimental Settings

◼ Evaluation measures:

⚫ Memory: the amount of memory consumption for created indexes.

⚫ Time: total elapsed time for pattern-searching for all 𝑆𝑖 ∈ 𝒮.

◼ Datasets: three types of dataset (URL, city, prot)

◼ Data structures:

⚫ Normal:  standard trie / ADFA

⚫ Pref: minimal prefix trie [Aoe, 1989] 

⚫ Packed:  packed trie / ADFA

◼ Bit width: 𝑤 = 64 and lg 𝜎 = 8 bits.

It handles unary paths to leaves by packed strings.



47

Characteristics of datasets and the size of their tries / ADFAs

◼ All datasets have about 105~106 strings and average length is about 10~300.

◼ ADFAs can reduce the graph size about 2.5~5 times compared to tries for url 

and city dataset.

The characteristics for each data set and the size of tries/ADFAs.



48

Memory usage of tries / ADFAs

◼ Packed ADFA is about 4~13 times memory efficient than normal tries.

◼ We observe both packed data structure and converting tries to minimal 

DFAs are effective.

The memory usage of tries/ADFAs.



49

Computation time for pattern-searching

◼ For all datasets, packed trie is the fastest, followed by packed ADFAs.

◼ Packed indexes performs pattern-searching 1.3~5 times faster than using 

standard tries even if pattern is not sufficiently long.

The computation time for pattern searching of tries/ADFAs.



50

Conclusion

◼ We proposed packed ADFA, a time and space-efficient index for pattern-

searching.

⚫ It can achieve optimal searching time for sufficiently long pattern.

⚫ It is more space-efficient than trie-based indexes.

◼ Experimental result shows that it is practically efficient.

⚫ It performs faster pattern-searching even if the pattern is not sufficiently long.

⚫ Both packing techniques and minimizing tries to ADFA contributes to 

reducing memory consumption.


	スライド 1: Packed Acyclic Deterministic Finite Automata
	スライド 2: Overview
	スライド 3: Pattern-searching
	スライド 4: Pattern-searching index
	スライド 5: Trie: a tree-formed pattern-searching index
	スライド 6: ADFA: a DAG-formed pattern-searching index
	スライド 7
	スライド 8: Pattern-searching query of a ADFA
	スライド 9: Pattern-searching query of a ADFA
	スライド 10: Pattern-searching query of a ADFA
	スライド 11: Pattern-searching query of a ADFA
	スライド 12: Pattern-searching query of a ADFA
	スライド 13: Pattern-searching query of a ADFA
	スライド 14: Pattern-searching query of a ADFA
	スライド 15: Pattern-searching query of a ADFA
	スライド 16: Packed string: storing multiple characters into a single machine word
	スライド 17: Efficient comparison using packed strings
	スライド 18: Efficient comparison using packed strings
	スライド 19: Efficient comparison using packed strings
	スライド 20: Combining pattern-searching indexes and packed string
	スライド 21: Our work: Packed ADFA
	スライド 22: Overview of our methods
	スライド 23: Packed pattern-searching for tries
	スライド 24: Overview of our methods
	スライド 25: Centroid-path decomposition (CPD) [Ferragina et al., 2008]: Decomposing a tree into paths
	スライド 26: Centroid-path decomposition (CPD) [Ferragina et al., 2008]: Decomposing a tree into paths
	スライド 27: Centroid-path decomposition (CPD) [Ferragina et al., 2008]: Decomposing a tree into paths
	スライド 28: Packed Trie: packed pattern-searching index for trie
	スライド 29: The algorithm for pattern-searching with packed trie
	スライド 30: The algorithm for pattern-searching with packed trie
	スライド 31: The algorithm for pattern-searching with packed trie
	スライド 32: The algorithm for pattern-searching with packed trie
	スライド 33: The algorithm for pattern-searching with packed trie
	スライド 34: The algorithm for pattern-searching with packed trie
	スライド 35: The algorithm for pattern-searching with packed trie
	スライド 36: The algorithm for pattern-searching with packed trie
	スライド 37: Time complexity for pattern-searching
	スライド 38: Packed pattern-searching for ADFA
	スライド 39: Overview of our methods
	スライド 40: Symmetric centroid path decomposition (SCPD) [Ganardi et al., 2022]: A generalized CPD for DAGs
	スライド 41: Symmetric centroid path decomposition (SCPD) [Ganardi et al., 2022]: A generalized CPD for DAGs
	スライド 42: Symmetric centroid path decomposition (SCPD) [Ganardi et al., 2022]: A generalized CPD for DAGs
	スライド 43: Packed ADFA: packed pattern-searching index for ADFA
	スライド 44: The algorithm for pattern-searching with packed ADFA (as with packed trie)
	スライド 45: Experiments
	スライド 46
	スライド 47
	スライド 48
	スライド 49
	スライド 50

