
Bit Packed Encodings for
Grammar-Compressed Strings

Supporting Fast Random Access

Alan M. Cleary, Joseph Winjum, Jordan Dood

Hiroki Shibata, and Shunsuke Inenaga

SEA2025

2

Grammar-Based Compression

◼ Compress a string by an admissible context-free

grammar that produces only that string

◼ 𝐺 = 𝑋, Σ, 𝑅, 𝑆 : a grammar

▲ 𝑋 : nonterminals, Σ : terminals, 𝑆 ∈ 𝑋 : start symbol

▲ 𝑅 defines the set of production rules 𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z
𝑋 : A,B,W,X,Y,Z
Σ : a,b

3

Three Types of Grammars

We consider three types of grammars:

◼ Straight-Line Programs (SLP)

An admissible grammar that generates exactly one

string

◼ Chomsky Normal Form (CNF)

Each rule (including the start rule) is of the form 𝑋𝑖 →

𝑐 or 𝑋𝑖 → 𝑋𝑙𝑋𝑟

◼ RePair Grammar

A CNF grammar where the start rule may contain an

arbitrary number of symbols on its right-hand side

SLP

CNF

RePair

4

Derivation Tree and Derivation DAG

◼ Production rules naturally define the tree

derivates the string (derivation tree)

⚫ The root corresponds to the start symbol

⚫ Leaves represent the string

◼ derivation DAG : A DAG obtained by merging

all isomorphic subtrees of derivation tree
a ba a

A BA A

WX

b

B

Y

Z

a b

A B

WX

Z

Y

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z
𝑋 : A,B,W,X,Y,Z
Σ : a,b

5

Random Access Problem

◼ Preprocessing: Given a text 𝑇, construct an index

supporting the following query

◼ Query:

⚫ Input: A position 𝑝 1 ≤ 𝑝 ≤ 𝑇

⚫ Output: the 𝑝-th character 𝑇[𝑝]

◼ Evaluation Criteria:

⚫ The space of preprocessed index

⚫ The query time

6

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = Z

𝑝 = 3

7

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = Z

𝑝 = 3
𝑠 = 2

8

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = Z

𝑝 = 3
𝑠 = 2

9

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = Y

𝑝 = 1

10

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = Y

𝑝 = 1
𝑠 = 2

11

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = W

𝑝 = 1

12

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = A

𝑝 = 1

13

Random Access to Grammar-Compressed Strings

The algorithm for random access to 𝑇 𝑝 for a CFG:

1. Set 𝑣 ← 𝑆 (𝑆 : the start symbol)

2. Repeat the following procedure while the production

rule corresponding to 𝑣 is of the form 𝑣 → 𝑋𝑙𝑋𝑟

1. Compute the subtree size 𝑠 of the left child of 𝑣

2. If 𝑠 < 𝑝, set 𝑝 ← 𝑝 − 𝑠 and move 𝑣 to the right child

Otherwise, move 𝑣 to the left child

3. Return the character corresponding to 𝑣

（This algorithm can be modified for general SLPs)

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

𝑣 = a

14

Random Access to Grammar-Compressed Strings

◼ Time complexity: 𝑂 ℎ

⚫ ℎ : the height of the grammar

◼ Space complexity: 𝑂 𝐺

⚫ |𝐺|: the total number of symbols on the right-hand side of

the rules

◼ Required operations:

⚫ Computing the size of string generated by each

nonterminal

▲ we assume that these values are precomputed

⚫ Efficient access to the right-hand side symbols for each rule

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅

𝑆 : Z

𝑋 : A,B,W,X,Y,Z

Σ : a,b

a ba a

A BA A

WX

b

B

Y

Z

15

Representing Grammars

◼ We assume that the input is a CNF grammar with 𝜎 rules

of the form 𝑋𝑖 → 𝑐 and 𝑚 rules of the form 𝑋𝑖 → 𝑋𝑙𝑋𝑟

⚫ Our method also works for RePair grammar

◼ We encode each nonterminal as an integer

⚫ We number all nonterminals so that the number of each right-

hand side symbol is smaller than that of left-hand side symbol

A → a B → b

W → AB X → AA

Y → WB Z → XY

𝑅
1 → a 2 → b

3 → 12 4 → 11

5 → 32 6 → 45

𝑅

16The Basic Array-of-Arrays
Representation

Canonical representation: array-of-arrays

◼ The right-hand side symbols of each rule of the

form 𝑋𝑖 → 𝑋𝑙𝑋𝑟 are represented by an array

Array-of-Arrays Representation

3 1 2

Σ a

5 3 2

4 1 1

b

6 4 5

1 → a 2 → b

3 → 12 4 → 11

5 → 32 6 → 45

𝑅

1 2

17The Basic Array-of-Arrays
Representation

The basic array-of-arrays representation:

◼ Pro: Fast look-up operation

⚫ Supports constant time access to the right-hand symbols of the rule

◼ Con: Space consumption

⚫ It uses at least σ𝑖=1
𝑚 |𝑒𝑥𝑝𝑟𝑖| words

⚫ Additional space is required to store pointers to each of the 𝑚 arrays

Array-of-Arrays Representation

3 1 2

Σ a

5 3 2

4 1 1

b

6 4 5

1 → a 2 → b

3 → 12 4 → 11

5 → 32 6 → 45

𝑅

1 2

18

Bit Packing Technique

A technique for encoding data in small space by packing

the raw bits into contiguous blocks of memory

◼ Each value in the packed array can be accessed in

constant time

(1,4,4,2,4) as a byte array with bit width 3

00110010 00101000

1 4 4 2 4

19Bit Packing Grammar Compressed
Strings

◼ We encode each right-hand side symbols in a rule

𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖 in the same bit width 𝑤𝑖

◼ Three strategies to determine the bit width 𝑤𝑖 :

⚫ Bit Pack Left (BPL)

⚫ Bit Pack Right (BPR)

⚫ Bit Pack Right Monotonic (BPRM)

20

Bit Pack Left (BPL) Strategy

◼ We set 𝑤𝑖 as 𝑤𝑖 = 𝑀𝑆𝐵 𝑋𝑖

⚫ This bit width is sufficient to represent the right-hand side

symbols because 𝑗 < 𝑖 holds for each 𝑋𝑖 and 𝑋𝑗 ∈ 𝑒𝑥𝑝𝑟𝑖

Rule 3-6 as a BPL byte array

01100010 01011010

10010100 00000000

4 5

𝑤3 = 𝑀𝑆𝐵 3 = 𝑀𝑆𝐵 0112 = 2
𝑤4 = 𝑀𝑆𝐵 4 = 𝑀𝑆𝐵 1002 = 3
𝑤5 = 𝑀𝑆𝐵 5 = 𝑀𝑆𝐵 1012 = 3
𝑤6 = 𝑀𝑆𝐵 6 = 𝑀𝑆𝐵 1102 = 3

1 2 1 1 3 2

1 → a 2 → b

3 → 12 4 → 11

5 → 32 6 → 45

𝑅

21

Bit Pack Left (BPL) Strategy

◼ We can access right-hand side symbols in constant time

without storing offset values

⚫ The bit position 𝑠(𝑖) where a given rule 𝑋𝑖 → 𝑒𝑥𝑝𝑟𝑖 starts is

𝑠 𝑖 = 1 + ෍

𝑘=1

𝜎

log2 𝑘 + 2 ෍

𝑗=𝜎+1

𝑖−1

log2 𝑗

 This position can be computed in 𝑂 1 time using MSB operation

22

Bit Pack Right (BPR) Strategy

◼ We set 𝑤𝑖 as 𝑤𝑖 = 𝑀𝑆𝐵 max 𝑋𝑗 ∣ 𝑋𝑗 ∈ 𝑒𝑥𝑝𝑟𝑖

◼ A cumulative sum array of 𝑤𝑖 is maintained

⚫ It enables constant-time access for 𝑒𝑥𝑝𝑟𝑖

⚫ This array also allows restoring each 𝑤𝑖

Rule 3-6 as a BPR byte array

01101111 10100101

𝑤3 = 𝑀𝑆𝐵 max 1,2 = 𝑀𝑆𝐵 0102 = 2
𝑤4 = 𝑀𝑆𝐵 max 1,1 = 𝑀𝑆𝐵 0012 = 1
𝑤5 = 𝑀𝑆𝐵 max 3,2 = 𝑀𝑆𝐵 0112 = 2
𝑤6 = 𝑀𝑆𝐵 max 4,5 = 𝑀𝑆𝐵 1012 = 3

1 211 4 5
1 → a 2 → b

3 → 12 4 → 11

5 → 32 6 → 45

𝑅

3 2

23

Bit Pack Right Monotonic (BPRM) Strategy

◼ We set 𝑤𝑖 as 𝑤𝑖 = max 𝑀𝑆𝐵 max 𝑋𝑗 ∣ 𝑋𝑗 ∈ 𝑒𝑥𝑝𝑟𝑖 , 𝑤𝑖−1

⚫ This strategy ensures monotonic bit widths (i.e., 𝑤𝑖−1 ≤ 𝑤𝑖)

⚫ The number of unique values of 𝑤𝑖 is at most ⌈log2 𝑚 + 𝜎 ⌉

Rule 3-6 as a BPRM byte array

10011101 00110010

01000000 00000000

1 2 1 1 3 4 5
𝑤3 = 𝑀𝑆𝐵 0102 = 2
𝑤4 = max 𝑀𝑆𝐵 0012 , 2 = 2
𝑤5 = max 𝑀𝑆𝐵 0112 , 2 = 2
𝑤6 = max 𝑀𝑆𝐵 1012 , 2 = 3

1 → a 2 → b

3 → 12 4 → 11

5 → 32 6 → 45

𝑅 2

24

Bit Pack Right Monotonic (BPRM) Strategy

◼ We store the following data structures:

⚫ A bitvector 𝐵𝑉 such that 𝐵𝑉 𝑖 = 1 holds iff 𝑤𝑖 < 𝑤𝑖+1,

supporting rank/select queries

⚫ A unique bit-width array 𝑤′

◼ Using the above data structures, 𝑒𝑥𝑝𝑟𝑖 can be accessed

in constant time

25

Analysis of Space Complexity

We analyze the bit count required by the BPL strategy

◼ Given a CNF grammar with 𝑛 = 𝑚 + 𝜎 total symbols,

the total number of bits is

1 + ෍

𝑘=1

𝜎

log2 𝑘 + 2 ෍

𝑗=𝜎+1

𝑛

log2 𝑗 = 1 + 2 ෍

𝑗=1

𝑛

log2 𝑗 − ෍

𝑘=1

𝜎

log2 𝑘

26

Analysis of Space Complexity

We analyze the bit count required by the BPL strategy

◼ Using σ𝑖=1
𝑛 log2 𝑖 = log2 𝑛! , we can obtain the upper

bound :

1 + 2 ෍

𝑗=1

𝑛

log2 𝑗 − ෍

𝑘=1

𝜎

log2 𝑘 < 2 log2 𝑛! − log2 𝜎!

⚫ Similarly, we can obtain the bound of a RePair grammar

⚫ The bound for BPR/BPRM can also be obtained by simply

adding the additional term for efficient random access

27

Optimality

◼ The total bit usage for CNF can be approximated by :

1 + 2 log2 𝑛! − log2 𝜎! ≈ 2𝑛 log2 𝑛 − 𝑂 𝑚 + 𝑂 log 𝑛

⚫ Analysis uses Stirling’s approximation

◼ The information-theoretic lower bound is :

2𝑛 + log2 𝑛! + 𝑜 𝑛 ≈ 𝑛 log2 𝑛 + 2 − log2 𝑒 𝑛 + 𝑜(𝑛)

◼ Ignoring lower-order terms, our bound is approximately

𝑛 log2 𝑛 bits above the information-theoretic lower bound

28

Experiments

◼ Extended Folklore Random Access for SLPs (FRAS) [Cleary et al., 2024] to

support bit packing strategies

◼ Compared encoded grammar sizes and random access run-times

against FOLCA [Maruyama et al., 2013] / ShapedSLP [Gagie et al., 2020]

⚫ The length of extracted substring length: 1, 10, 100, 1000

◼ Built grammars using 3 different algorithm on 2 corpora of data:

⚫ Pizza & Chili

▲ Re-Pair [Larsson and Moffat, 2000] and MR-RePair [Furuya et al., 2019]

⚫ Pangenomes (we show only the result of c1000 dataset)

▲ We used BigRePair [Gagie et al., 2019] algorithm because the dataset is large

29

Results (Pizza&Chilli)

MR-RePair RePair Others

Packed Methods

◼ Packed methods achieved significant space saving (particularly BPL and BPRM)

◼ Non-packed methods was the fastest, but packed methods were competitive with the non-packed method

◼ Packed methods were both smaller and faster than FOLCA / Shaped SLP

30

Results (c1000 dataset, BigRePair)

◼ Packed methods achieved significant space saving (particularly BPL and BPRM)

◼ Non-packed methods was the fastest, but packed methods were competitive with the non-packed method

◼ Packed methods were both smaller and faster than FOLCA / Shaped SLP

BigRePair Others

31

Conclusions

◼ Bit-packed encodings are more space-efficient in practice

⚫ Our methods also have theoretical analysis compared to the

information-theoretic lower bound

◼ Bit packed encodings support fast random access

⚫ The encodings preserve the array-of-arrays good memory locality

◼ Bit packed encodings preserve the benefits of array-of-

arrays representations

	スライド 1: Bit Packed Encodings for Grammar-Compressed Strings Supporting Fast Random Access
	スライド 2: Grammar-Based Compression
	スライド 3: Three Types of Grammars
	スライド 4: Derivation Tree and Derivation DAG
	スライド 5: Random Access Problem
	スライド 6: Random Access to Grammar-Compressed Strings
	スライド 7: Random Access to Grammar-Compressed Strings
	スライド 8: Random Access to Grammar-Compressed Strings
	スライド 9: Random Access to Grammar-Compressed Strings
	スライド 10: Random Access to Grammar-Compressed Strings
	スライド 11: Random Access to Grammar-Compressed Strings
	スライド 12: Random Access to Grammar-Compressed Strings
	スライド 13: Random Access to Grammar-Compressed Strings
	スライド 14: Random Access to Grammar-Compressed Strings
	スライド 15: Representing Grammars
	スライド 16: The Basic Array-of-Arrays Representation
	スライド 17: The Basic Array-of-Arrays Representation
	スライド 18: Bit Packing Technique
	スライド 19: Bit Packing Grammar Compressed Strings
	スライド 20: Bit Pack Left (BPL) Strategy
	スライド 21: Bit Pack Left (BPL) Strategy
	スライド 22: Bit Pack Right (BPR) Strategy
	スライド 23: Bit Pack Right Monotonic (BPRM) Strategy
	スライド 24: Bit Pack Right Monotonic (BPRM) Strategy
	スライド 25: Analysis of Space Complexity
	スライド 26: Analysis of Space Complexity
	スライド 27: Optimality
	スライド 28: Experiments
	スライド 29: Results (Pizza&Chilli)
	スライド 30: Results (c1000 dataset, BigRePair)
	スライド 31: Conclusions

