
Hiroki Shibata (Kyushu University),

Yuto Nakashima (Kyushu University),

Yutaro Yamaguchi (The University of Osaka),

Shunsuke Inenaga (Kyushu University)

2025/8/19 WAAC2025

𝑂(log 𝑛)

2

 Query Capability: Processing compressed data (e.g., extraction) without full

decompression.

 Compression performance and query capability are in a trade-off.

 LZ compression [Ziv and Lempel, 1977]:High compression ratio, but no query support.

 Grammar Compression [Kieffer and Yang, 2000]: Supports various queries, but low
compression ratio.

 Goal: High compression with query capability.

3

 Compression Performance: Achieves compression performance
between that of grammar and LZ.

 Query Capability: Supports compressed data access as fast as
grammar compression.

Querying Compression
Not Supported Very High LZ comp.

Excellent Moderate Grammar comp.
Good High LZSE comp.

4

1. Relationship between LZSE and grammar

 Converting LZSE and Grammar

 A theoretical gap in compression power

2. 𝑂(log 𝑛)-time random access index for LZSE

3. Linear-time computation of greedy LZSE

4. A lower bound between greedy/optimal LZSE

etc.

Focus of This Talk

𝑛 : input string length

5

[Ziv and Lempel, 1977]

Represents data via a sequence of factors (LZ factorization):

1. A single literal character

2. A copy of a previous substring
Copy 3 characters from position 2

6

[Kieffer and Yang, 2000]

Represents data using a Context-Free Grammar (CFG) with:

1. A set of terminals Σ, A set of non-terminals 𝒳

2. Production rules 𝑅 = 𝑋௜ → 𝑒𝑥𝑝𝑟௜ ∣ 𝑋௜ ∈ 𝒳

3. Start symbol 𝑆 ∈ 𝒳

7

Represents data via a sequence of factors (LZSE factorization):

1. A single literal character

2. A copy of consecutive previous factors
Copy 2 factors starting from
the 2nd- factor

8

 Start symbol: 𝑆 → 𝑋ଵ𝑋ଶ ⋯ 𝑋௠ (each non-terminal corresponds to a factor)

 Factor rules:

 𝑋௜ → 𝑐 (for a literal factor representing a character 𝑐)

 𝑋௜ → 𝑋௝ ⋯ 𝑋௞ (for a copy factor referring to 𝑋௝ ⋯ 𝑋௞)

 The size of this grammar is 𝑂 𝑚ଶ (𝑚 : the number of LZSE factors)

ab b b a b b b a ba
X1 X2 X3 X4 X5 X6

S 𝑅
S → X1⋯X6
X1 → a
X2 → b
X3 → X1X2
X4 → X2X3
X5 → b
X6 → X2X3

9

Method: Grammar Decomposition [Rytter, 2003]

Replace subsequent occurrences of a non-terminal with a pointer to the
first one.

 Resulting LZ size ≤ original grammar size.

 The resulting LZ factorization is actually an LZSE factorization.

10

LZ
Restricted ver.

Convertible, size does not grow

Convertible, but size may grow

LZ ⊇ LZSE

LZSE grammar
compression

Question: Do LZSE and Grammar have the same compression power?

(i.e., are their minimal sizes within a constant factor?)

 Known gap between LZ & LZSE: Θ log 𝑛 in the worst-case

 Can we find a similar gap between LZSE & the smallest grammar?

11

This theorem implies that LZSE is asymptotically more powerful than
grammar compression.

 For any string: |the smallest LZSE| ≤ |the smallest grammar|

 For a specific string: |the greedy LZSE| ≪ |the smallest grammar|

For an arbitrarily large 𝑚, there exists a string 𝑇 of length Θ 𝑚ଶ where:

• The size of greedy LZSE of 𝑇 : Θ 𝑚

• The size of the smallest grammar of 𝑇 : Ω 𝑚𝛼 𝑚

Theorem

𝛼 𝑥 : the inverse Ackermann function

12

• 𝑥ଵ, … , 𝑥௠ ∈ 𝑋௠, ranges 𝑙ଵ, 𝑟ଵ , … , 𝑙௠, 𝑟௠

• Output: 𝑞௜ = ⨂ 𝑥௝
௥೔
௝ୀ௟೔

1 ≤ 𝑖 ≤ 𝑚

(⊗ : a semigroup operation on 𝑋)

Known lower bound: Requires Ω 𝑚𝛼 𝑚 semigroup operations for

some inputs. [Chazelle and Rosenberg, 1991]

Off-line Range Product Problem

13

Construct a string 𝑇 from the ORPP instance:

𝑇 = 𝑥ଵ ⋯ 𝑥௠$ଵ𝑄ଵ$ଶ𝑄ଶ$ଷ ⋯ $௠𝑄௠$௠ାଵ

𝑄௜ = 𝑥௟೔
⋯ 𝑥௥೔

 1 ≤ 𝑖 ≤ 𝑚

Example: Sequence: 1,2,3,4 , Query: 2, 3 , 1, 3 , 2, 4 , [3, 4]

𝑇 = 1234 $ଵ 23 $ଶ 123 $ଷ 234 $ସ 34 $ହ

$௜ : delimiter

14

Construct a string 𝑇 from the ORPP instance:

𝑇 = 𝑥ଵ ⋯ 𝑥௠$ଵ𝑄ଵ$ଶ𝑄ଶ$ଷ ⋯ $௠𝑄௠$௠ାଵ

𝑄௜ = 𝑥௟೔
⋯ 𝑥௥೔

 1 ≤ 𝑖 ≤ 𝑚

The proving strategy:

 Show that we can solve the ORPP instance in 𝑂 𝑔 operations if there
exists a grammar of 𝑇 with size 𝑔.

 Due to the hardness of ORPP, the grammar size must be Ω 𝑚𝛼 𝑚 .

$௜ : delimiter

15

For each nonterminal 𝑋 in the grammar:

 exp 𝑋: the string derived from 𝑋

 head 𝑋 : the prefix of exp 𝑋 before the
first delimiter

 tail 𝑋 : the suffix of exp 𝑋 after the last
delimiter

For a string 𝑆 = 𝑠ଵ ⋯ 𝑠 ௌ on 𝑋,

let the value of 𝑆 as val 𝑆 =⊗௜ୀଵ
|ௌ|

𝑠௜ .
val head 𝑋 = 𝑥ଶ ⊗ 𝑥ଷ ⊗ 𝑥ସ

16

For a rule 𝑋 → 𝑌𝑍, we can compute

val head 𝑋 , val tail 𝑋

from the values of
head 𝑌 , tail 𝑌 , head 𝑍 , tail 𝑍

using 𝑂 1 semigroup operations.

Example from Figure:

 val head 𝑋 = val head 𝑌

 val tail 𝑋 = val tail 𝑌 ⊗ val tail 𝑍

Property 1

17

For a rule 𝑋 → 𝑌𝑍, if exp 𝑌 contains $௜ and
exp 𝑍 contains $௜ାଵ , we can compute 𝑞௜ as

𝑞௜ = val 𝑄௜ = val tail 𝑌 ⊗ val head 𝑍 .

val 𝑄ଶ = val 𝑥ଶ𝑥ଷ𝑥ସ𝑥ହ𝑥଺

= val 𝑥ଶ𝑥ଷ ⊗ val 𝑥ସ𝑥ହ𝑥଺

= val tail 𝑌 ⊗ val head 𝑍

Example from Figure:

Property 2

18

1. Convert a grammar to SLP of size 𝑂 𝑔 .

2. Compute val head 𝑋 and val tail 𝑋 for all nonterminals 𝑋.

 𝑂 𝑔

3. Compute all query answers 𝑞௜ = val 𝑄௜ .

 𝑂 𝑚 ⊆ 𝑂 𝑔

Total cost: 𝑂 𝑔 semigroup operations.

19

 Smallest Grammar Size:

 The problem can be solved in 𝑂 𝑔 semigroup operations

 The lower bound of this problem is Ω 𝑚𝛼 𝑚

→ There exists an input for which the size of smallest grammar is Ω 𝑚𝛼 𝑚

 Greedy LZSE size: 𝑂 𝑚 (see the following figure)

Result: An asymptotic gap exists between the LZSE and grammar comp.

20

LZSE: A restricted LZ factorization

 Positioned between LZ and Grammar-based methods.

 An asymptotically strong compression power.

 Supports efficient queries, same as grammar-based methods.

LZ
Restricted ver.

Convertible, size does not grow

Convertible, but size may grow

LZ ⊇ LZSE

LZSE grammar
compression

Efficient
querying

Strong
Compression

