2025/8/19 WAAC2025

LZ-Start-End: An LZ-style Compressor

Supporting 0(logn)-time Random Access

Hiroki Shibata (Kyushu University),

Yuto Nakashima (Kyushu University),
Yutaro Yamaguchi (The University of Osaka),

Shunsuke Inenaga (Kyushu University)

Background

B Query Capability: Processing compressed data (e.g., extraction) without full

decompression.

B Compression performance and query capability are in a trade-off.

® LZ compression [Zivand Lempel, 1977]:High compression ratio, but no query support.

® Grammar Compression [Kieffer and Yang, 2000]: Supports various queries, but low

compression ratio.

B Goal: High compression with query capability.

Our Contribution: LZ-Start-End (LZSE) Compression

B Compression Performance: Achieves compression performance

between that of grammar and LZ.

B Query Capability: Supports compressed data access as fast as

grammar compression.

| Compression | Querying

LZ comp. Very High Not Supported

Grammar comp. Moderate Excellent
LZSE comp. High Good

Our Results & Focus of This Talk

L

1. Relationship between LZSE and grammar

® Converting LZSE and Grammar — Focus of This Talk

® Atheoretical gap in compression power
2. 0(logn)-time random access index for LZSE
3. Linear-time computation of greedy LZSE
4. A lower bound between greedy/optimal LZSE

etc.

n:input string length

5

Background 1: Lempel-Ziv (LZ) Compression [zivand Lempel, 1977]

Represents data via a sequence of factors (LZ factorization):
1. Asingle literal character

2. A copy of a previous substring

Copy 3 characters from position 2}
1 Z 3 4 % 6 7 8 9 0 711

al [bl] (1,2) (2,4) (2,3)
alblla blb a b bllb a b
L
[

Background 2: Grammar Compression [kieffer and vang, 2000]

Represents data using a Context-Free Grammar (CFG) with:
1. A set of terminals X, A set of non-terminals X
2. ProductionrulesR = {X; - expr; | X; € X}

3. Startsymbol S e X

Y :{a b} X - a¥YyYby Y Y
X:{xv7 | Yo 7o /£ / \ V4
Z Z Z
S:X \Z_>ba) ¥ N / \ "
a b a b b a b b b a b

7

Proposed Method: LZ-Start-End (LZSE) Compression

Represents data via a sequence of factors (LZSE factorization):
1. Asingle literal character

2. A copy of consecutive previous factors

Copy 2 factors starting from
the 2nd- factor

1 2 3 4 5 6 7 8 9 10 U
al bl @, 2l @,2) |Ipl| @,2r

a bla bl a blbllb a b

LZSE — Grammar

m Startsymbol: S - X, X, -+ X,,, (each non-terminal corresponds to a factor)

B Factorrules:
® X; — c (fora literal factor representing a character ¢)

® X; - X;-- X, (for a copy factor referring to X; --- X;)

B The size of this grammar is 0(m?) (m : the number of LZSE factors)

s e S
X, — aL1 6 // ‘ \\
X— Db Xy Xy, Xy X, Xg 6
o abla blo a bbb a b
. e
|

e = %%) SR .

Grammar — LZSE

Method: Grammar Decomposition [Rytter, 2003]

Replace subsequent occurrences of a non-terminal with a pointer to the
first one.

B Resulting LZ size < original grammar size.

B The resulting LZ factorization is actually an LZSE factorization.

Relationships and a Question

Restricted ver Convertible, but size may grow
|) grammar
[L2) »[LZSE - { compression]
LZ 2 LZSE Convertible, size does not grow

Question: Do LZSE and Grammar have the same compression power?
(i.e., are their minimal sizes within a constant factor?)
B Known gap between LZ & LZSE: O(logn) in the worst-case

B Can we find a similar gap between LZSE & the smallest grammar?

11

A separation between LZSE and grammar

Theorem

For an arbitrarily large m, there exists a string T of length 6(m?) where:

« The size of greedy LZSE of T : ©(m)

- The size of the smallest grammar of T : Q(ma(m))

This theorem implies that LZSE is asymptotically more powerful than
grammar compression.

® For any string: |the smallest LZSE| < |the smallest grammar|

B For a specific string: [the greedy LZSE| « |the smallest grammar|

a(x): the inverse Ackermann function

Lower Bound on Grammar Size (1)

12

— Off-line Range Product Problem

* Input: a sequence xy, ..., x,, € X™, ranges [l;, 1], ..., [Lyn, Tm]

« Output: g; = ®;i=li xi (1<i<m)

(® : a semigroup operationon X)

Known lower bound: Requires Q(ma(m)) semigroup operations for

some inputs. [Chazelle and Rosenberg, 1991]

Lower Bound on Grammar Size (2)

13

Construct a string T from the ORPP instance:
T =% xm$101%202%3 - $mQmSmsq

Qi=xp %, (1< <m)

[$i . delimiter}

Example: Sequence: (1,2,3,4), Query: [2,3],[1,3],[2, 4], [3, 4]

T =1234 $,23 $,123 $,234 $,34 $.

Lower Bound on Grammar Size (3)

14

Construct a string T from the ORPP instance:

T = X1 Xm$1Q1$2Q2$3 QOm+1

Qi=xp %, (1 <P <m)
[$l~ . delimiter]

The proving strategy:

B Show that we can solve the ORPP instance in 0(g) operations if there

exists a grammar of T with size g.

B Due to the hardness of ORPP, the grammar size must be Q(ma(m)).

15

Lower Bound on Grammar Size (4)

For each nonterminal X in the grammar: %

B exp X: the string derived from X

B head(X): the prefix of exp X before the Y 7
first delimiter / /
: Y Z
B wil(X): the suffix of exp X after thelast ' w - .
delimiter [x2x3x4$2x2x% [x4x5x6x7x8x9]

i]) L 1

For a String S =5 S|s| on X, ﬁeagE)Y(% |ltai](Y) head(Z),tail(Z)'
ea

let the value of 5 as val(s) =®'7| s, . tail(X}
Val(head(X)) =%, @ x3 Q x4]

Lower Bound on Grammar Size (5)

Property 1 X
ForaruleX - YZ, we can compute
val(head(X)), Val(tail(X)) v 7
from the values of |
head(Y), tail(Y), head(Z), tail(Z) exp Y /:xp 7
. . . | . % A \
using 0(1) semigroup operations. fx2x3x4$2x2xrj [x4x5x6x7x8x9\]

head(Y) tail(Y) head(Z)tail(Z)
head(X) Y)
tail (X)

Example from Figure: l

[val(head(X)) = Val(head(Y))

B val(tail(X)) = val(tail(¥)) ® val(tail(2))

17

Lower Bound on Grammar Size (6)

Property 2

ForaruleX - YZ,ifexpY contains $; and

exp Z contains $;., , we can compute g; as

q; = val(Q;) = val(tail(Y)) ® val(head(Z2)).

Example from Figure:
val(Q;) = val(x,x3%4x5%6)
= val(x,x3) & val(xsxsxg)

= val(tail(Y)) X Val(head(Z))

Y Z

/exp Y exp Z\

A N 7 N\

[x2x3x4$2x2x3] [x4x5x6$3x6x7]

head(Y) tail(¥) head(Z) tail(Z)

head(X) v) tail(X)
Q2

Lower Bound on Grammar Size (7)

18

1. Convert a grammar to SLP of size 0(g).
2. Compute val(head(X)) and val(tail(X)) for all nonterminals X.
® It takes 0(g) semigroup operations.

3. Compute all query answers q; = val(Q;).

® It takes 0(m) < 0(g) semigroup operations.

Total cost: 0(g) semigroup operations.

19

Final Comparison: Grammar vs. LZSE

B Smallest Grammar Size:

® The problem can be solved in 0(g) semigroup operations

® The lower bound of this problem is Q(ma(m))

— There exists an input for which the size of smallest grammar is Q(ma(m))

B Greedy LZSE size: 0(m) (see the following figure)

T =|x;|- xm)$1Q1$ZQZﬁ3 Sl QmSm+1

Result: An asymptotic gap exists between the LZSE and grammar comp.

Summary

20

LZSE: A restricted LZ factorization

H Positioned between LZ and Grammar-based methods.

® An asymptotically strong compression power.

m Supports efficient queries, same as grammar-based methods.

Convertible, but size may grow

Restricted ver.

\ \ grammar
[LZ b[LZSE { compression]
LZ 2 LZSE Convertible, size does not grow

Strong ¢——— £ 116Nt
i querying

Compression

