#### 2025/8/19 WAAC2025

# LZ-Start-End: An LZ-style Compressor Supporting $O(\log n)$ -time Random Access

Hiroki Shibata (Kyushu University),
Yuto Nakashima (Kyushu University),
Yutaro Yamaguchi (The University of Osaka),
Shunsuke Inenaga (Kyushu University)

# **Background**

- Query Capability: Processing compressed data (e.g., extraction) without full decompression.
- Compression performance and query capability are in a trade-off.
  - LZ compression [Ziv and Lempel, 1977]: High compression ratio, but no query support.
  - Grammar Compression [Kieffer and Yang, 2000]: Supports various queries, but low compression ratio.
- Goal: High compression with query capability.

# **Our Contribution: LZ-Start-End (LZSE) Compression**

- Compression Performance: Achieves compression performance between that of grammar and LZ.
- Query Capability: Supports compressed data access as fast as grammar compression.

|               | Compression | Querying      |
|---------------|-------------|---------------|
| LZ comp.      | Very High   | Not Supported |
| Grammar comp. | Moderate    | Excellent     |
| LZSE comp.    | High        | Good          |

#### Our Results & Focus of This Talk

- 1. Relationship between LZSE and grammar
  - Converting LZSE and Grammar
  - A theoretical gap in compression power

Focus of This Talk

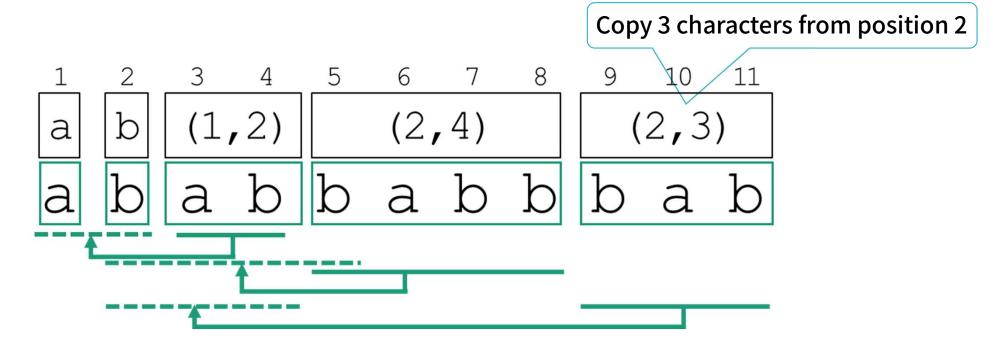
- 2.  $O(\log n)$ -time random access index for LZSE
- 3. Linear-time computation of greedy LZSE
- 4. A lower bound between greedy/optimal LZSE etc.

*n*: input string length

### Background 1: Lempel-Ziv (LZ) Compression [Ziv and Lempel, 1977]

Represents data via a sequence of factors (LZ factorization):

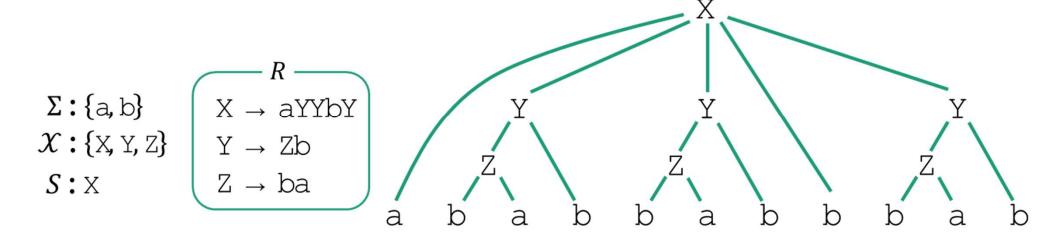
- 1. A single literal character
- 2. A copy of a previous substring



## Background 2: Grammar Compression [Kieffer and Yang, 2000]

#### Represents data using a Context-Free Grammar (CFG) with:

- 1. A set of terminals  $\Sigma$ , A set of non-terminals X
- **2.** Production rules  $R = \{X_i \rightarrow expr_i \mid X_i \in \mathcal{X}\}$
- 3. Start symbol  $S \in \mathcal{X}$



# Proposed Method: LZ-Start-End (LZSE) Compression

Represents data via a sequence of factors (LZSE factorization):

(2,2)

- 1. A single literal character
- 2. A copy of consecutive previous factors

(1,2)

Copy 2 factors starting from the 2<sup>nd-</sup> factor

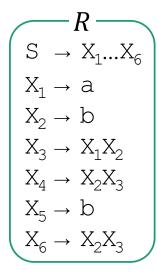
9 10 11

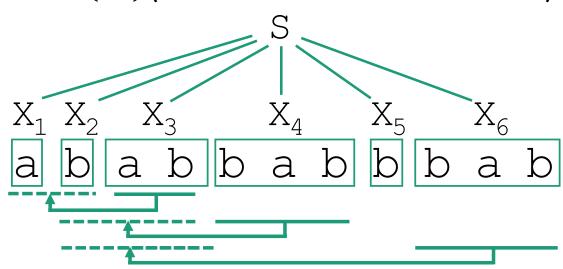
(2,2)

O a b

#### **LZSE** → **Grammar**

- Start symbol:  $S \rightarrow X_1 X_2 \cdots X_m$  (each non-terminal corresponds to a factor)
- Factor rules:
  - $X_i \rightarrow c$  (for a literal factor representing a character c)
  - $X_i \rightarrow X_j \cdots X_k$  (for a copy factor referring to  $X_j \cdots X_k$ )
- The size of this grammar is  $O(m^2)$  ( m: the number of LZSE factors)



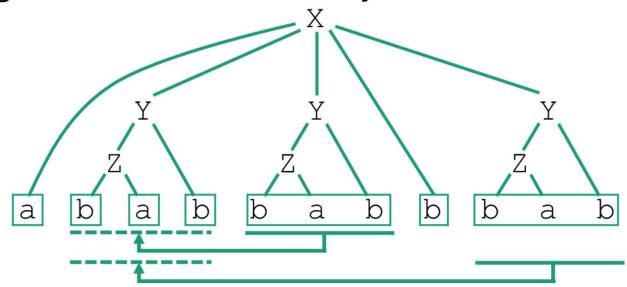


#### **Grammar** → LZSE

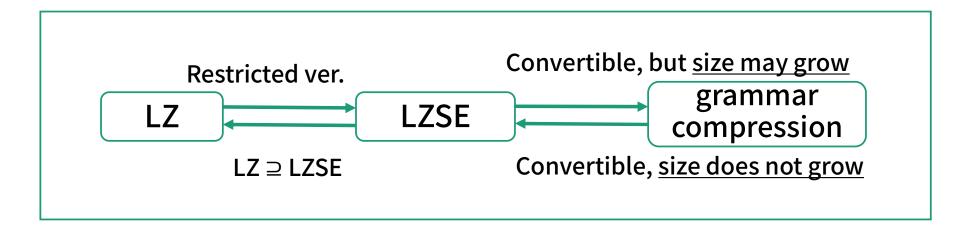
Method: Grammar Decomposition [Rytter, 2003]

Replace subsequent occurrences of a non-terminal with a pointer to the first one.

- Resulting LZ size ≤ original grammar size.
- The resulting LZ factorization is actually an LZSE factorization.



## Relationships and a Question



Question: Do LZSE and Grammar have the same compression power? (i.e., are their minimal sizes within a constant factor?)

- Known gap between LZ & LZSE:  $\Theta(\log n)$  in the worst-case
- Can we find a similar gap between LZSE & the smallest grammar?

# A separation between LZSE and grammar

#### Theorem

For an arbitrarily large m, there exists a string T of length  $\Theta(m^2)$  where:

- The size of greedy LZSE of  $T : \Theta(m)$
- The size of the smallest grammar of  $T : \Omega(m\alpha(m))$

This theorem implies that LZSE is asymptotically more powerful than grammar compression.

- For any string: |the smallest LZSE| ≤ |the smallest grammar|
- For a specific string: |the greedy LZSE| << |the smallest grammar|

 $\alpha(x)$ : the inverse Ackermann function

## **Lower Bound on Grammar Size (1)**

#### Off-line Range Product Problem

- Input: a sequence  $x_1, ..., x_m \in X^m$ , ranges  $[l_1, r_1], ..., [l_m, r_m]$
- Output:  $q_i = \bigotimes_{j=l_i}^{r_i} x_j \ (1 \le i \le m)$

 $(\otimes : a \text{ semigroup operation on } X)$ 

Known lower bound: Requires  $\Omega(m\alpha(m))$  semigroup operations for some inputs. [Chazelle and Rosenberg, 1991]

## **Lower Bound on Grammar Size (2)**

#### Construct a string *T* from the ORPP instance:

$$T = x_1 \cdots x_m \$_1 Q_1 \$_2 Q_2 \$_3 \cdots \$_m Q_m \$_{m+1}$$

$$Q_i = x_{l_i} \cdots x_{r_i} \ (1 \le i \le m)$$

\$<sub>i</sub>: delimiter

**Example: Sequence:** (1,2,3,4) , **Query:** [2,3], [1,3], [2,4], [3,4]

$$T = 1234 \$_1 23 \$_2 123 \$_3 234 \$_4 34 \$_5$$

## **Lower Bound on Grammar Size (3)**

#### Construct a string *T* from the ORPP instance:

$$T = x_1 \cdots x_m \$_1 Q_1 \$_2 Q_2 \$_3 \cdots \$_m Q_m \$_{m+1}$$

$$Q_i = x_{l_i} \cdots x_{r_i} \ (1 \le i \le m)$$

 $_i$ : delimiter

#### The proving strategy:

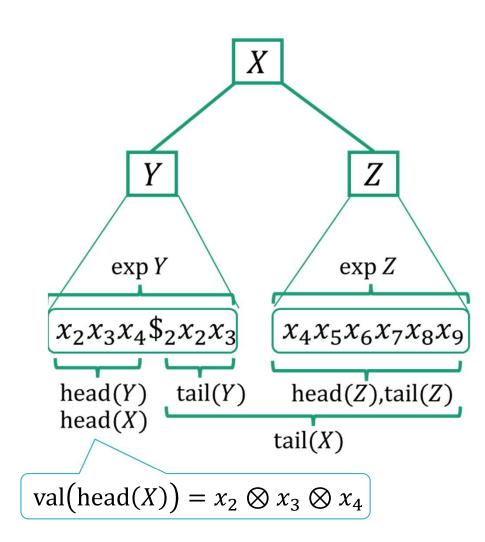
- Show that we can solve the ORPP instance in O(g) operations if there exists a grammar of T with size g.
- Due to the hardness of ORPP, the grammar size must be  $\Omega(m\alpha(m))$ .

## **Lower Bound on Grammar Size (4)**

#### For each nonterminal *X* in the grammar:

- $\blacksquare$  exp *X*: the string derived from *X*
- head(X): the prefix of exp X before the first delimiter
- tail(X): the suffix of exp X after the last delimiter

For a string  $S = s_1 \cdots s_{|S|}$  on X, let the <u>value</u> of S as  $val(S) = \bigotimes_{i=1}^{|S|} s_i$ .



# **Lower Bound on Grammar Size (5)**

#### **Property 1**

For a rule  $X \rightarrow YZ$ , we can compute

val(head(X)), val(tail(X))

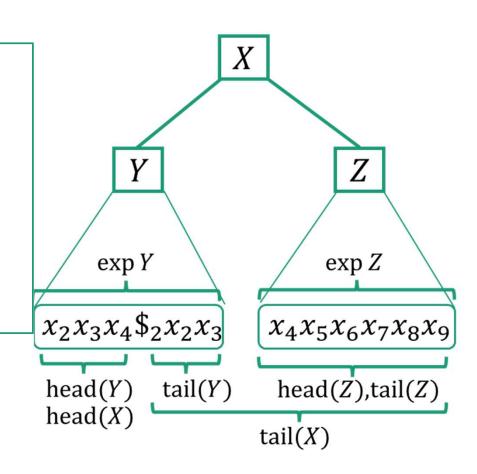
from the values of

head(Y), tail(Y), head(Z), tail(Z)

using O(1) semigroup operations.

#### **Example from Figure:**

- val(head(X)) = val(head(Y))
- $\operatorname{val}(\operatorname{tail}(X)) = \operatorname{val}(\operatorname{tail}(Y)) \otimes \operatorname{val}(\operatorname{tail}(Z))$



# **Lower Bound on Grammar Size (6)**

#### **Property 2**

For a rule  $X \to YZ$ , if  $\exp Y$  contains  $\$_i$  and  $\exp Z$  contains  $\$_{i+1}$ , we can compute  $q_i$  as

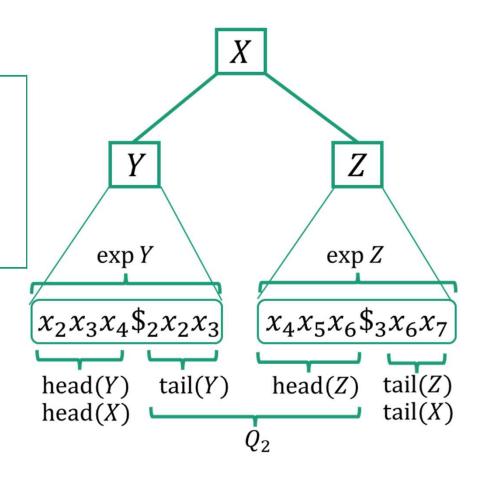
 $q_i = \operatorname{val}(Q_i) = \operatorname{val}(\operatorname{tail}(Y)) \otimes \operatorname{val}(\operatorname{head}(Z)).$ 

#### **Example from Figure:**

$$val(Q_2) = val(x_2x_3x_4x_5x_6)$$

$$= val(x_2x_3) \otimes val(x_4x_5x_6)$$

$$= val(tail(Y)) \otimes val(head(Z))$$



## **Lower Bound on Grammar Size (7)**

- 1. Convert a grammar to SLP of size O(g).
- 2. Compute val(head(X)) and val(tail(X)) for all nonterminals X.
  - It takes O(g) semigroup operations.
- 3. Compute all query answers  $q_i = val(Q_i)$ .
  - It takes  $O(m) \subseteq O(g)$  semigroup operations.

Total cost: O(g) semigroup operations.

## Final Comparison: Grammar vs. LZSE

- Smallest Grammar Size:
  - The problem can be solved in O(g) semigroup operations
  - The lower bound of this problem is  $\Omega(m\alpha(m))$
  - $\rightarrow$  There exists an input for which the size of smallest grammar is  $\Omega(m\alpha(m))$
- Greedy LZSE size: O(m) (see the following figure)

$$T = x_1 \cdots x_m \$_1 Q_1 \$_2 Q_2 \$_3 \cdots \$_m Q_m \$_{m+1}$$

Result: An asymptotic gap exists between the LZSE and grammar comp.

## **Summary**

#### LZSE: A restricted LZ factorization

- Positioned between LZ and Grammar-based methods.
  - An asymptotically strong compression power.
- Supports efficient queries, same as grammar-based methods.

