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極大連続反復: 以下の3つの条件を満たすような同じ部分文字列の組

1. 連続性: 2つの出現の間にそれらと同じ文字列が出現しない

2. 右極大性: それぞれの右隣の文字が一致しない

3. 左極大性: それぞれの左隣の文字が一致しない

極大連続反復
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極大連続反復: 以下の3つの条件を満たすような同じ部分文字列の組

1. 連続性: 2つの出現の間にそれらと同じ文字列が出現しない

2. 右極大性: それぞれの右隣の文字が一致しない

3. 左極大性: それぞれの左隣の文字が一致しない

連続性なし
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極大連続反復: 以下の3つの条件を満たすような同じ部分文字列の組

1. 連続性: 2つの出現の間にそれらと同じ文字列が出現しない

2. 右極大性: それぞれの右隣の文字が一致しない

3. 左極大性: それぞれの左隣の文字が一致しない

右極大性なし
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極大閉部分文字列: 極大性を持つ閉部分文字列

 極大連続反復と一対一対応を持つことが知られている

以降では、極大連続反復を計算するアルゴリズムを説明します

極大連続反復

時間の都合で厳密な定義は省略 
（スライドのAppendixに記載してます） 

極大閉部分文字列
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 極大連続反復をオフラインに 𝑂 𝑛 log 𝑛  時間で計算するアルゴリズム

が存在 [Badkobeh et al., 2024]

 オンライン手法（＝文字の追加に対応した手法）は未知

※入力文字列の⾧さを 𝑛 と表記 

文字列の先頭への文字追加に対し、1文字あたりならし 𝑂 log 𝑛  時間
で極大連続反復をオンラインに計算できる。

今回示した定理
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極大連続反復: 以下の3つの条件を満たすような同じ部分文字列の組

1. 連続性: 2つの出現の間にそれらと同じ文字列が出現しない

2. 右極大性: それぞれの右隣の文字が一致しない

3. 左極大性: それぞれの左隣の文字が一致しない

左極大性以外の条件を満たす文字列（右極大連続反復）の変化を考える！

（左極大性は後からチェックすればよい）
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観察

元の文字列における右極大連続反復は、先頭への文字追加
後も右極大連続反復のままである。

追加文字 元の文字列

既存の右極大連続反復（一部）

→ 新規発生する右極大連続反復だけ考えれば良く、扱いやすい！
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接尾辞木: 文字列の接尾辞を表すコンパクトトライ

 各葉が文字列の接尾辞を表している

 頂点数は 𝑂 𝑛  であり、𝑂 𝑛  領域で表現できる

接尾辞木の
各葉へのパスが

表す文字列

枝分かれのない頂点を縮約したトライ 

ab c c b a c b $
9 8 7 6 5 4 3 2 1 

baccbacb$ の接尾辞木

$ b 

$ 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

c 

b 

a
c 
b 
$ 

c 
c 
b 
a 
c 
b 
$ 

※入力文字列の末尾文字がuniqueな文字 $ で終わることを仮定 
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頂点が表す文字列の最左出現の位置で頂点にラベル付けする

 図中の赤い頂点（文字列 cb を表す頂点）の例
 cb は位置 6,3 の2カ所に出現
 最左出現の位置は 6 なので、6 でラベル付け

ab c c b a c b $
9 8 7 6 5 4 3 2 1 

baccbacb$ の接尾辞木

$ b 

$ 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

c 

b 

a
c 
b 
$ 

c 
c 
b 
a 
c 
b 
$ 

1 

2 

3 

4 

5 

6 

7 
8 

9 

9 

9 

8 

9 

7 

6 

※indexは右側から1,2,⋯と数える（左側に文字を追加するため） 
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cbaccbacb$ の接尾辞木

ab c c b a c bc $

追加文字 元の文字列
10 9 8 7 6 5 4 3 2 1 

最⾧パス（新しい葉へのパス）が表す文字列

更新後の文字列全体を表す新しい葉を1つ追加す
ることで接尾辞木を更新できる

→ この際に新しい右極大連続反復を計算したい！

$ b 

$ 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

c 

a
c 

b 
1 

2 

3 

4 

5 

6 
7 

8 

9 

6 

9 

9 

8 

c 
c 
b 
a 
c 
b 
$ 

9 

6 

7 
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cbaccbacb$ の接尾辞木

ab c c b a c bc $

追加文字 元の文字列
10 9 8 7 6 5 4 3 2 1 

最⾧パスが表す文字列

$ b 

$ 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

c 

a
c 

b 
1 

2 

3 

4 

5 

6 
7 

8 

9 

9 

9 

8 

c 
c 
b 
a 
c 
b 
$ 

9 

6 

観察から導ける性質

新しく生まれる右極大連続反復は、以下のようになる:

 反復の文字列: 最⾧パス上に現れる、「最⾧パスの1つ下の頂
点とのラベルが異なる」頂点に対応

 左側の出現位置: 更新後の文字列の接頭辞として現れる

 右側の出現位置: 頂点ラベルの値と一致

新しい
右極大

連続反復

6 

7 
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接尾辞木のラベルが同じ頂点を結ぶ辺をHeavy Edge、
そうでない頂点をLight Edgeとする

cbaccbacb$ の接尾辞木

1 

2 

3 

4 

5 

6 
7 

8 

9 

9 

9 

8 

9 

6 

$ b 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

$ 
c 
c 
b 
a 
c 
b 
$ 

c 

a
c 

b 

→ 最⾧パス上のLight Edgeを高速に列挙できれば、
新規右極大連続反復も列挙できる！

観察4
新しい右極大連続反復に対応する頂点は
Light Edgeの上側端点に限られる。

6 

7 
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頂点ラベル・辺属性の更新後

1 

2 

3 

4 

5 

6 
7 

8 

9 

6 

9 

9 

8 

9 

6 

7 

$ b 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

$ 
c 
c 
b 
a 
c 
b 
$ 

c 

a
c 

b 
1 

2 

3 

4 

5 

6 
7 

8 

9 

9 

8 

9 

$ b 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

c 
c 
b 
a 
c 
b 
$ 

$ 

c 

a
c 

b 

10 

10 

10 

10 

10 

頂点ラベル・辺属性の更新前
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接尾辞木に対して以下の操作を行えればよい:

1. 頂点への葉の追加

2. 根から葉のパス上のLight Edgeを列挙

3. 列挙したLight EdgeをHeavy Edgeに切り替え、既
存Heavy Edgeを適切にLight Edgeに切り替え

cbaccbacb$ の接尾辞木

1 

2 

3 

4 

5 

6 
7 

8 

9 

6 

9 

9 

8 

9 

6 

7 

$ b 

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

$ 
c 
c 
b 
a 
c 
b 
$ 

c 

a
c 

b 

実は、これらはLink-Cut Tree [Sleator & Tarjan, 1983]

の内部で行っている処理と完全に同一であり、
ならし 𝑂 log 𝑛  時間で行える！
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文字追加の際に行う各手続きの計算量: 

 接尾辞木への葉の追加: ならし 𝑂 log 𝜎 ⊆ log 𝑛

 右極大連続反復の列挙: ならし 𝑂(log 𝑛)

 Heavy/Light Edgeの更新: ならし 𝑂(log 𝑛)

以上より、文字追加に対してならし 𝑂 log 𝑛  時間で処理を行える

 左極大性の判定を適宜行うことで、極大連続反復の列挙も同じ計算量で行える

 極大連続反復・極大閉部分文字列の一対一対応より、極大閉部分文字列の列挙も可能

※ 𝜎 は文字の種類数 

Link-Cut Tree

Weinerのアルゴリズム
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極大連続反復のオンライン計算アルゴリズムを紹介
 片側極大な連続反復・極大閉部分文字列・etc…にも使える
 1文字追加あたりならし 𝑂 log 𝑛  時間で、既存オフライン手法と同等の速度

研究のポイント: 自然に考察を行った結果、本質的にLink-Cut Treeと同
等の構造が現れた！

 LCTをブラックボックスとして使う手法自体はたくさんある

 LCTの内部構造がそのまま現れる例はかなり珍しい（？）
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 文字列: 有限集合 Σ 上の列 𝑇 ∈ Σ∗

 今回は Σ ∈ 𝑂 poly 𝑛  で順序付きアルファベットを仮定

 𝑇 の部分文字列: 𝑇 中の連続する部分列

 𝑖 要素目～  𝑗 要素目の部分文字列を 𝑇 𝑖. . 𝑗  と表記

 𝑇 の接頭辞: 𝑇 の先頭部分を取り出した部分文字列 𝑇 1. . 𝑗

 𝑇 の接尾辞: 𝑇 の末尾部分を取り出した部分文字列 𝑇 𝑖. . 𝑛

※本発表では文字列 𝑇 の⾧さを 𝑛 と表記する 
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文字列 𝑇 の（真の）接頭辞かつ（真の）接尾辞であるような文字
列を 𝑇 のボーダーと呼び、 𝑇 の最⾧ボーダーを  𝑏𝑜𝑟𝑑𝑒𝑟 𝑇  と表す。

定義: ボーダー

ab a b b a b aa a𝑇ଵ

ab a b a b a ba a𝑇ଶ

𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଵ) 𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଵ) 

𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଶ) 𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଶ) 
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※今回は⾧さ1の文字列を開文字列と定義 

定義: 閉文字列

𝑇 にボーダーが存在し、𝑇 中の 𝑏𝑜𝑟𝑑𝑒𝑟 𝑇  の出現回数がちょうど2回
であるような文字列 𝑇 を閉文字列 (closed string) と呼ぶ。

※閉でない文字列を開文字列 (open string) と呼ぶ

ab a b b a b aa a𝑇ଵ

ab a b a b a ba a𝑇ଶ

𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଵ) 𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଵ) 

𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଶ) 𝑏𝑜𝑟𝑑𝑒𝑟(𝑇ଶ) 

𝑇ଵ は閉文字列 

𝑇ଶ は開文字列 
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𝑇 中の同じ部分文字列の連続する出現の組 𝑇 𝑖. . 𝑖′ , 𝑇 𝑗. . 𝑗′  𝑖 < 𝑗  が
𝑇 𝑖 − 1. . 𝑖′ ≠ 𝑇 𝑗 − 1. . 𝑗ᇱ  , 𝑇 𝑖 − 1. . 𝑖ᇱ + 1 ≠ 𝑇 𝑗. . 𝑗ᇱ + 1  を満たすとき、
𝑇 𝑖. . 𝑖′ , 𝑇 𝑗. . 𝑗′  の組を 𝑇 の極大連続反復と呼ぶ。

定義: 極大連続反復

ba a d a b a ca d

ba a d a b a ca d

ba a d a b a ca d

右上図青枠部分が極大連続反復

 右に1文字伸ばすと不一致（中央図）

 左に1文字伸ばすと不一致（下図）
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𝑇 中の閉部分文字列 𝑇 𝑖. . 𝑗  について 𝑇 𝑖 − 1. . 𝑗 , 𝑇 𝑖. . 𝑗 + 1  がともに
開部分文字列であるとき、𝑇 𝑖. . 𝑗 を極大閉部分文字列 (maximal 
closed substring, MCS) と呼ぶ。

定義: 極大閉部分文字列

※片方向の拡張が開部分文字列な場合右極大・左極大な閉部分文字列と呼ぶ

ba a d a b a ca d

ba a d a b a ca d

ba a d a b a ca d

右上図赤枠部分がMCSになっている

 右に1文字伸ばすと開文字列（中央図）

 左に1文字伸ばすと開文字列（下図）
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極大閉部分文字列 (MCS)・極大連続反復は一対一対応をもつ:

 𝑇 𝑖. . 𝑗ᇱ  がMCSなら、 𝑇 𝑖. . 𝑗ᇱ  の最⾧ボーダーの出現の組が極大連続反復

 𝑇 𝑖. . 𝑖′ , 𝑇 𝑗. . 𝑗′  が極大連続反復なら、 𝑇 𝑖. . 𝑗ᇱ  は 𝑇 𝑖. . 𝑖′ = 𝑇 𝑗. . 𝑗′  を最⾧ボー
ダーとするMCS

→ 極大連続反復を全て求めることでMCSを全て求められる！（逆も成り立つ）

MCS

極大連続反復
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 上界: 片側極大に限っても 𝑂 𝑛 log 𝑛  

 𝑂 𝑛 log 𝑛  時間の列挙アルゴリズムの存在から成り立つ

 下界: Ω 𝑛 log 𝑛  

 ランダムな2進文字列の極大連続反復の個数の期待値が Θ(𝑛 log 𝑛)

[Kosolobov, 2024]
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 文字列 𝑇（初期状態では空文字列）に対し、操作列 𝑐ଵ, … , 𝑐௡ (𝑐௜ ∈ Σ) が
オンラインで与えられる

 𝑖 回目の操作では、文字列 𝑇 を 𝑇𝑐௜ へと更新する

 どの更新操作の後でも、以下の処理を指定の計算量で行える必要がある:

 𝑇 の極大連続反復の個数の出力（定数時間）

 𝑇 の極大連続反復の列挙（極大連続反復の個数に対して線形時間）
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観察A

先頭文字追加で新しく出現する連続反復は以下の条件を満たす。

1. 左側の出現: 更新後の文字列の接頭辞

2. 右側の出現: 元の文字列中での最左の出現

追加文字 元の文字列

新しい連続反復
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観察B

先頭文字追加で新しく出現する連続反復が右極大である必要十
分条件は、「1文字⾧い接頭辞に対応する新規連続反復と、右
側出現の開始位置が異なること」である。

元の文字列追加文字
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観察Aから導ける性質

 新しい連続反復は、接尾辞木の根～新しい葉を結ぶパス上の
文字列となる

 新しい連続反復の左側の出現位置は、その文字列に対応する
頂点のラベルと一致する

ab c c b a c bc $

追加文字 元の文字列
10 9 8 7 6 5 4 3 2 1 

新しい葉が表す文字列
新しい

連続反復

$ b 

$ 

cbaccbacb$ の接尾辞木

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

c 

b 
1 

2 

3 

4 

5 

6 
7 

8 

9 

9 

9 

8 

c 
c 
b 
a 
c 
b 
$ 

9 

c 
6 
a 

7 

6 

6 
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観察Bから導ける性質

新しい連続反復が右極大である必要十分条件は、「文字列
に対応する接尾辞木の頂点のラベルが、根～新しい葉を結
ぶパス上の1つ下の頂点とラベルが異なること」である。

ab c c b a c bc $

追加文字 元の文字列
10 9 8 7 6 5 4 3 2 1 

新しい葉が表す文字列

$ b 

$ 

cbaccbacb$ の接尾辞木

$ 
a
c 

c 
c 
b 
a 
c 
b 
$ 

c 

b 
1 

2 

3 

4 

5 

6 
7 

8 

9 

9 

9 

8 

c 
c 
b 
a 
c 
b 
$ 

9 

c 
6 
a 

7 

6 

6 

〇
×
×
〇
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各連結成分に属する頂点列をSplay木で管理
し、Splay木を頂点とする木 (Link-Cut Tree
[Sleator & Trarjan, 1983])を構築する

 各Splay木はHeavy Edgeからなる連結成
分（パスを成す）を表現

 Light edgeはSplay木同士を結ぶ辺で表現

a c $ b 

b 

cbacb$ 

$ 

cbacb$ 

1 

7 

3 

6 

6 
a
c 

0 

7 

b$ 
6 

9 

6 
6 

3 

0 

7 
1 

6 
9 

cbaccbacb$の接尾辞木
（一部省略）

接尾辞木に対応するLink-Cut 
Tree（一部省略）
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定理 [Sleator & Tarjan, 1983]

頂点数 𝑚 の木を表現するLink-Cut Treeに以下の一連の操作を行う
計算量は償却 𝑂 log 𝑚  である。

1. 新規の葉頂点の追加

2. 根～新規葉頂点を結ぶSplay Treeの列挙

3. 根～新規葉頂点 を結ぶパス上の辺を全てheavy edgeに変化させ、
パス性を保つように既存のheavy edgeをlight edgeに更新

この定理により、1文字追加あたりならし 𝑂 log 𝑛  時間でLink-Cut 
Treeをメンテナンスできる


